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Eric Zhu QUICK INTRODUCTION

Quick Introduction
To begin, we will define two models with respect to two likelihoods:

1. The first model (model 1) will be based on this likelihood: yi ∼ N(exp(α+ βti), σ2)

2. The second model (model 2) will be based on this likelihood: log(yi) ∼ N(α+ βti, σ
2)

Our data looks like (for visulization purposes only!):
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Figure 1: Scatterplot of y on t
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Part 1: Priors
Overview
We know some information about y, that is:

1. It is not physically impossible to get y < 0, but should be fairly unlikely.
2. y and t should be negatively correlated.
3. It is very unlikely for us to see a value for y greater than 50.
4. It is always true that −1 ≤ t ≤ 2.5.

From both of the likelihoods, notice that both model will require 3 priors for these parameters: α, β, σ. We
will use the normal distribution for all 3 parameters it is sensible to assume by the CLT that with large n,
we would have approximately normal distributions. So for each prior we will specify µ, τ . Note that since
there cannot be negative standard deviation/variance, σ is actually a half normal distribution. Also in the
report, the the normal distribution will be parameterized with µ and σ rather than µ and σ2 because normal
distributions in Stan use µ and σ.

We don’t know much about these priors given that the 4 bullet points we know are not super informative.
But, we know a few crucial pieces of information: the range of max and min values for y, i.e.,y is unlikely to
be greater than 50 and y is unlikely to be less than 0. Since we also know that −1 ≤ t ≤ 2.5, we can figure
out some sensible priors by looking the extremes of t. Note that since we are using normal (or half normal)
distributions for priors, we will use 2τ as a sensible cutoff for determining our prior parameters because
calculating µ± 2τ allows us to capture most of the density of the normal distribution (≈ 95% of values).

Prior for model 1
To begin we will try putting a prior on α, β. Note that since we have µi = exp(α+ βti), we will need to be
careful with how large we make the means of these two priors.

As stated in the quick introduction, we will being by examining y values at the extreme values of t. We know
that since y, t are negatively correlated, we have µi = exp(α+ βti) to be monotonically decreasing, so our
maximum values of y occur when t is close to -1 and our minimums occur when t is close to 2.5.

So thinking about our constraints when t = −1, we realize that we want exp(α + β · −1) ≤ 50, and when
t = 2.5, we realize that we want exp(α + β · 2.5) ≥ 0. As such we can form a equation using our two
constraints:

exp(α+ β · −1)
exp(α+ β · 2.5) = 45

0.5

Note that I’ve chosen 0.5 to equal exp(α+β ·2.5) and 45 to equal exp(α+β ·−1) because it should be unlikely
for y < 0 and y > 50, and we need to factor in the spread of yi and the spread of the prior distributions.

From our relation above, we can solve for β using the exponent rules to get:

exp(α)exp(β · −1)
exp(α)exp(β · 2.5) = 45

0.5
−β
2.5β = 45

0.5

Thus, solving for β, we get −1.28566, which is negative and conforms to the y, t are negatively correlated
constraint, and should allow us to stay within our constraints regarding likely values of y.
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To find α, we need to solve exp(α+ β · −1) = 45. Since we have β = −1.28566, we can calculate a value for
α, which comes out to 2.521.

These values for α, β represent one set of rather “extreme” possible values for α, β because we have set
exp(α+ β · 2.5) = 0.5, and exp(α+ β · −1) = 45, and 0.5 and 45 represent very nearly improbable values of y.
Additionally, β = −1.28566 is an extreme one since it represents a steep slope with a corresponding intercept
that is decidedly large while also constrained on −1 ≤ t ≤ 2.5.

On the flip slide, we can have the other extremes of α and β by using the following equation:

exp(α+ β · −1)
exp(α+ β · 2.5) = 10

0.5
We choose the values 10 and 0.5 because we aren’t given much information about y such as it’s PDF, but we
do know that it is unlikely to be less than 0 and greater than 50. Since we had already gotten β, α values for
a steep slope and large intercept, we wanted to get values for a slope that is relatively close to 0 (while still
having a negative correlation between y, t) and an intercept that is relatively small.

Solving for α, β using the same procedure we did above we get: α = 1.44666, β = −0.855924. We now have
two values each for α, β, one for each extreme. If we suppose that each of these points correspond to either
µ± 2τ , e.g., -1.28566 = µβ − 2τ and −0.855924 = µβ + 2τβ , we can get the parameters for prior distributions
of α, β. To find µβ we will take the simple average of the two values of β, i.e., −1.28566−0.855924

2 = −1.07079.
Since we assumed that these two points corresponded to µβ ± 2τβ , we get τβ = 0.107434 with µβ = −1.07079.
We can do the same operations to find µα, τα, which come out as: µα = 1.98383, τα = 0.268585.

So to recap, we now have values the parameters for the distributions of α ∼ N(µα, τα), β ∼ N(µβ , τβ):

α ∼ N(1.98383, 0.268585), β ∼ N(−1.07079, 0.107434)

To find parameters for σ, we will begin with µσ. We hope that our mean for yi is close or on the data points,
so we will set µσ = 0. Now recall that 0 ≤ y ≤ 50, so we can write the following equation that will help set τσ:

exp((µα + 2τα) + (µβ − 2τβ) · −1) + (µσ + 2τσ)
exp((µα − 2τα) + (µβ − 2τβ) · 2.5)− (µσ + 2τσ) = 50

0.05
This equation allows us to find what value of τσ we need such that 0 ≤ y ≤ 50 when we plug in values for
α, β, σ that are at approximately the 95th percentile of their respective prior distributions. The numerator of
this equation has the highest possible intercept, steepest possible slope, and most additive noise we can have
while limited to our ±2τ “cutoff”. We should find it extremely unlikely to see y values greater than 50 or less
than 0 where −1 ≤ t ≤ 2.5.

Plugging in -1.28566 for µβ − 2τβ , 2.521 for µα + 2τα, 1.44666 for µα − 2τα and 0 for µσ, we can solve for τσ,
which we get as: 0.069245.

To recap, we get the following distributions for our priors:

1. α ∼ N(1.98383, 0.268585)
2. β ∼ N(−1.07079, 0.107434)
3. σ ∼ N+(0, 0.069245)
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Discussion of the Priors: why we have weakly informative priors and prior checks

In constructing the priors, we incorporated all 4 bullet points. Off the bat, knowing that y, t were negatively
correlated was crucial for knowing that β needed a distribution where the probability density was entirely (or
almost entirely) over negative values. Next, the two bullet points detailing the most likely values of y were
considered the most since they most explicitly provided the range of likely values for y, which allowed us
to decide on where to centre the means of our prior distributions and also decide on how spread out likely
values for our priors should be. Additionally, knowing that −1 ≤ t ≤ 2.5, allowed us to realize on such a
relatively small interval, a steeper slope would result in much more extreme values at t = −1 and t = 2.5.
Combining all this information allowed us to go through the process of hypothesizing values for α and β such
that using values in the tails of the two distributions in the equation exp(α+ βt) would still result in values
where 0 ≤ exp(α+ βt) = y ≤ 50. Keep in mind that we also knew that we needed to put a distribution on σ,
so when setting the parameters for α, β, we made sure to choose “safe” parameters such that when adding
likely values for σ to exp(α+ βt), we would still mostly generate values of y above 0 and under 50.

While these 4 pieces of information was substantial, we still have weakly informative priors. First we have
weakly informative priors because we know the scale of the data; it is given to us that −1 ≤ t ≤ 2.5 and
y is likely between 0 and 50. Another reason is that after drawing from the prior predictive distribution,
we see that while almost all of the density is concentrated within the range of likely y values, i.e., below 50
and greater than 0, we also see density above 50, which means that unlikely but possible y values still occur
under our prior. We can see this from the plot of prior predictive distributions:

y_pred[80] y_pred[90] y_pred[100]

y_pred[40] y_pred[50] y_pred[60] y_pred[70]

y_pred[1] y_pred[10] y_pred[20] y_pred[30]

1 2 3 4 5 0 1 2 3 0.0 0.5 1.0 1.5 2.0

5 10 2.5 5.0 7.5 10.0 2 4 6 8 2 4 6

10 20 30 40 50 10 20 30 40 5 10 15 20 25 5 10 15 20

Figure 2: Draws from prior predictive distribution, top left is distribution of draws with smallest t, bottom
right is distribution of draws with largest t - model 1

In particular, we see that in the plot of the distribution with the smallest t (the one in the top left above)
there is still density very close to 50, which should be decidedly unlikely. We also see that in the plot of
y_pred[100], there are negative values, which should also be “fairly unlikely”. However, we aren’t given
access to how fast the density decreases near 50, so we don’t know in mathematical terms how unlikely seeing
y > 50 actually is. In contrast, knowing how heavy the tails are would allow us to construct our priors such
that our tails better represent plausible data set rather than covering these more implausible data set. This
uncertainty does give evidence to our argument that we have weakly informative priors.
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We can also examine the histograms of the draws from the prior µ values from the prior:

mu[80] mu[90] mu[100]

mu[40] mu[50] mu[60] mu[70]

mu[1] mu[10] mu[20] mu[30]

1 2 3 4 5 1 2 3 0.0 0.5 1.0 1.5 2.0

5 10 2.5 5.0 7.5 10.0 2 4 6 8 2 4 6

10 20 30 40 50 10 20 30 40 5 10 15 20 25 5 10 15 20

Figure 3: Draws of mu from the prior, top left is distribution of draws with smallest t, bottom right is
distribution of draws with largest t - model 1

We also see that as t increases towards 2.5, the centre of the distribution of µ also moves towards 0 as we
would expect. Here we also similarly to the plot of y_pred[1] that mu[1] also has density close to or above
50, and on the other extreme, we see that the plot of mu[100] has a left tail very close to 0. Note here that
we won’t get values below 0 because the range of the exp() function is strictly non-negative. So again, we
have evidence that we have weakly informative priors as the distributions for µ are able to cover unlikely
values of y.

Additionally, we see that as t increases, the corresponding distributions move fairly fast to the left, indicating
that our distribution is not too constrained as we can see that our mu[100] distribution does not cover values
such as 40 to 50. Since we also see the same behaviour with the y_pred distributions, we have evidence that
these priors are sensible.

Finally, it is worth mentioning that there’s an enlarged side by side plot of the mu[1] and y_pred[1]
distributions in the appendix under “Model 1 Prior Plots”. These can allow us to better examine the extreme
values in the tails of the respective distributions.
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Prior for model 2
To begin, we recall that the likelihood defines the log(y) to be normally distributed. As such, we will first
preprocess the data by applying a log transformation. There’s a reference plot of the log-transformed data in
the appendix under “Model 2 prior plots”.

We will be following a very similar set of processes in determining the priors for this model as we did with the
first model. Note that we have to consider our y values in terms of log(y), but since the log transformation is
monotonic, a lot of our analysis from model 1 holds in this section.

As stated in the quick introduction, we will being by examining y values at the extreme values of t. We
know that since y, t are negatively correlated, we have µi = α+ βti to be monotonically decreasing, so our
maximum values of y occur when t is close to -1 and our minimums occur when t is close to 2.5.

So thinking about our constraints when t = −1, we realize that we want α + β · −1 ≤ log(50), and when
t = 2.5, we realize that we want α+ β · 2.5 ≥ log(0). Unlike the first model, we will use a system of equations
as we can’t apply exponent rules:

{
α+ β · −1 = log(45)
α+ β · 2.5 = log(0.5)

Note that we’ve chosen log(45) to equal α+ β · −1 because it should be unlikely for y > 50, and we’ve chosen
α+ β · 2.5 = log(0.5) because it is close to 0 and we avoid the problem with log(0) being undefined.

Solving the system of equation we get:

{
α = 2.521
β = −1.28566

We note that our system of equations here and our equation in the model 1 section will result in equivalent
values for α, β given that we fix the same y values at t = −1, t = 2.5. More formally for some x, y ∈ R,

{
α+ β · −1 = log(x)
α+ β · 2.5 = log(y)

⇐⇒
exp(α+ β · −1)
exp(α+ β · 2.5) = x

y

So next, we calculate:

{
α+ β · −1 = log(10)
α+ β · 2.5 = log(0.5)

Solving for α, β we get: α = 1.44666, β = −0.855924. We now have two values each for α, β, one for each
extreme as we did in model 1. To recap, the first set of α, β are those with a very steep slope and large
intercept (as we are constrained on t ∈ [−1, 2.5]), and the second set are those with a slope close to 0 and a
small intercept. As we did with model 1, if we suppose our values are either µ± 2τ , e.g., −1.28566 = µβ − 2τ
and −0.855924 = µβ + 2τβ , we can get the parameters for prior distributions of α, β. To find µβ we will take
the simple average of the two values of β, i.e., −1.28566−0.855924

2 = −1.07079. Since we assumed that these two
points corresponded to µβ ± 2τβ , we get τβ = 0.107434 with µβ = −1.07079. We can do the same operations
to find µα, τα, which come out as: µα = 1.98383, τα = 0.268585.

We now have values the parameters for the distributions of α ∼ N(µα, τα), β ∼ N(µβ , τβ):
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α ∼ N(1.98383, 0.268585), β ∼ N(−1.07079, 0.107434)

To find parameters for σ, we will begin with µσ. We again hope that our mean for yi is close or on the data
points, so we will set µσ = 0. Now recall that 0 ≤ y ≤ 50, so we can write the following equation that will
help set τσ:

(µα + 2τα) + (µβ − 2τβ) · −1 + (µσ + 2τσ) = log(50)

The equation will allow us to find a value of τσ that is a “conservative” choice as we plug in values for α, β, σ
that are at approximately the 95th percentile of their respective prior distributions. In other words (µα + 2τα)
will be a high intercept, µβ − 2τβ will be a steep slope, and so the value for τσ should be small enough that
y ≥ log(50) should still be very rare. Note that since we need to undo the log scale after drawing from
the predictive distribution (using exp(log(y))), we will always have non-negative y values in the end, so our
information that y < 0 is unlikely isn’t as much as a consideration as it was model 1.

Plugging in -1.28566 for µβ − 2τβ , 2.521 for µα + 2τα, 1.44666 for µα − 2τα and 0 for µσ, we can solve for τσ,
which we get as: 0.052682

To recap, we get the following distributions for our priors:

1. α ∼ N(1.98383, 0.268585)
2. β ∼ N(−1.07079, 0.107434)
3. σ ∼ N+(0, 0.052682)

Discussion of the Priors: why we have weakly informative priors and prior checks

In constructing the priors, we again incorporated all 4 bullet points. In fact, our process of constructing the
priors was almost exactly the same as model 1, except on a log scale; the following paragraphs will be similar
the analysis of model 1. However, a key difference is that µ will not be constrained to non-negative numbers
as µ is no longer the result of exp().

As with model 1, knowing y, t were negatively correlated was crucial for knowing that β needed a distribution
where the probability density was entirely (or almost entirely) over negative values. Next, the two bullet
points detailing the most likely values of y were considered the most since they most explicitly provided
the range of likely values for y, which allowed us to decide on where to centre the means of our prior
distributions and also decide on how spread out likely values for our priors should be. Additionally, knowing
that −1 ≤ t ≤ 2.5, allowed us to realize on such a relatively small interval, a steeper slope would result in
much more extreme values at t = −1 and t = 2.5. Combining all this information allowed us to go through
the process of hypothesizing values for α and β such that using values in the tails of the two distributions
in the equation α+ βt would still result in values such that 0 ≤ α+ βt = exp(log(y)) ≤ 50. Keep in mind
that we also knew that we needed to put a distribution on σ, so we when setting the parameters for α, β, we
made sure to choose “safe” parameters such that when adding likely values for σ to α+ βt, we would still
mostly generate values of y under 50. We did not care about values under 0 because we would undo the log
transformation after drawing from the predictive distribution.

We again have weakly informative priors because we know the scale of the data; it is given to us that
−1 ≤ t ≤ 2.5 and y is likely between 0 and 50 as our data hasn’t changed. Another reason is that after
transforming draws from the prior predictive distribution back into our data’s orginal scale, we see that while
almost all of the density is concentrated within the range of plausible y values, (i.e., below 50 and greater
than 0) we also see density above 50, meaning that unlikely but possible y values still occur under our prior.

We can see this in the mcmc_hist plot below:
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y_pred[80] y_pred[90] y_pred[100]

y_pred[40] y_pred[50] y_pred[60] y_pred[70]

y_pred[1] y_pred[10] y_pred[20] y_pred[30]

1 2 3 4 1 2 3 0.0 0.5 1.0 1.5 2.0

5 10 3 6 9 12 2 4 6 8 2 4 6

20 40 60 10 20 30 40 5 10 15 20 25 5 10 15 20

Figure 4: Draws from prior predictive distribution, top left is distribution of draws with smallest t, bottom
right is distribution of draws with largest t - model 2

In particular, we see that in the plot of the distribution with the smallest t (the one in the top left above)
there is still density above 50 (even around 60), which should be very implausible y values. Of course, we
make such a statement under a decent amount of uncertainty because we aren’t given access to how fast
the density decreases near 50, even with a log transformation. In contrast, knowing how heavy the tails are
would allow us to construct our priors such that our tails better represent plausible data set rather than
covering these more implausible data set. This uncertainty does give evidence to our argument that we have
weakly informative priors.

It is worth noting with model 2, we see more density above 50 when comparing the distributions of y_pred[1]
with that of model 1. We also see slightly longer right tails on all of the distributions above, but between the
two models, the centres of the distribution seem to move towards 0 at a similar rate as t increases to 2.5.

We can also examine the histograms of the draws from the posterior µ values from the posterior:

mu[80] mu[90] mu[100]

mu[40] mu[50] mu[60] mu[70]

mu[1] mu[10] mu[20] mu[30]

−0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 −2 −1 0

1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

Figure 5: Draws of mu from the prior, top left is distribution of draws with smallest t, bottom right is
distribution of draws with largest t - model 2

We also see that as t increases towards 2.5, the centre of the distribution of µ also moves towards 0 as we
would expect, although unlike model 1, the center of mu[100] actually goes below 0 given that µ is no longer
the result of the exp() function. Since the distribution of mu[1] shows values above 4, we find that we should
expect to find values around exp(4) ≈ 54.5 if we applied the exp() function to every value in the distribution
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of mu[1]. So again, we have evidence that we have weakly informative priors as the distributions for µ are
able to cover unlikely values of y.

Additionally, we see that as t increases, the corresponding distributions move at a sensible rate to the left,
indicating that our distribution is not too constrained as we can see that our mu[100] distribution does not
cover values above 4, i.e., values in the right tail of mu[1]. Also, the range of values for µ we get on this
log-scale are not implausible (given our information about y) when we convert it back into our original scale
by applying the exp() function. Since we also see the same behaviour with the y_pred distributions, we have
evidence that these priors are sensible.

It is worth mentioning again that there’s an enlarged side by side plot of the mu[1] and y_pred[1] distributions
in the appendix under “Model 2 Prior Plots”. These can allow us to better examine the extreme values in the
tails of the respective distributions. Please note that the distribution of mu[1] is in the log scale.
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Part 2: Posteriors
Individual critiques of models
Model 1

To begin our model critique, we first examine the distributions of the µ, α parameters drawn from the posterior
distribution vs the prior distribution:
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Figure 6: Draws of mu and alpha from the posterior vs the prior - model 1

From the two plots above, we see behaviour we expect to see with weakly informative prior; the posterior
distribution has less spread and stays within the prior, which shows the regularizing properties of the weakly
informative priors. So we clearly don’t have much evidence if any of prior-data conflict as our scales on our
prior distribution are sensible, we haven’t grossly misunderstood the information we were given about the
dataset. However, this changes a bit when we look at the comparisons between the distributions of draws of
σ and β from the prior and posterior distributions:
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Figure 7: Draws of beta and sigma from the posterior vs the prior - model 1

We see that plot regarding β has the distribution of β values from the posterior overlapping the very end
of the right tail of the values from the prior. However, the prior has a really long tail and the posterior is
much “skinner” than the prior. So perhaps we have some tweaking to do with respect to the β prior, but this
behaviour is very similar to the example of the cauchy prior we looked at in class. However, the behaviour of
σ shows evidence of prior-data conflict as the distribution of σ values from the posterior are far away from
those of the prior, and worse, the distribution of values from the posterior is about as spread as the prior.
This may be a problem relating to us having very little information regarding the likelihood of y > 50 or
y < 0 since that information factored into our thinking for the σ prior.
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Next, to evaluate our fit, we can evaluate test statistics plots of min, max, and skewness, which are all
ancillary test statistics given our normal distribution (they aren’t highly dependent on the distribution
parameters).

Looking at the min, max test statistic plots, we see:

−1 0 1 2

T = min
T(yrep)

T(y)

18 19 20 21 22 23

T = max
T(yrep)

T(y)

Figure 8: Test statistics plots of min, max - model 1

We gather that the model was able to fairly well capture the min and max of the data as the T (y) line in
both plots are close to the centre of the T (yrep) distribution. Our observation also holds with the skewness
test statistic plot:

0.6 0.7 0.8 0.9 1.0

T = skewness
T(yrep)

T(y)

Figure 9: Test statistics plots of sknewness - model 1

From examining these 3 plots, we see that the model performed well in capturing the 3 test statistics of our
observed data, indicating that our model fit the data well.

Next, comparing the standard deviation of the prior predictive distribution with that of the posterior predictive
distribution, we see that the standard deviations from the posterior predictive distribution are on average far
smaller. For example, y_pred[1] from the posterior predictive distribution had a standard deviation of ≈
0.82 while y_pred[1] from the prior predictive distribution had a standard deviation of ≈ 6.37. However,
if we examine y_pred[100] from the posterior predictive distribution, we find that its standard deviation
is still ≈ 0.82, but the standard deviation of y_pred[100] from the prior predictive distribution we find
that its standard deviation is ≈ 0.22. It seems a bit strange that the distribution from the prior predictive
distribution is tighter than the distribution from the posterior predictive distribution; it could be indicative
of the prior data conflict we saw from our plot of σ, where the centre of the σ distribution from the posterior
had a far higher centre than that from the prior. It could also be due to the posterior µ distribution having
it’s density more spread out than the prior µ distribution, whose distribution (despite having a really long
right tail) is incredibly concentrated around 0. A plot of distributions generated from the posterior predictive
distribution can be found in the appendix under “Model 1 posterior plots” for reference.

Next, we’ll examine the time course plot:
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Figure 10: Time course plot - model 1

We can see that the model was able to generate data that looks very similar to the observed data. While it’s
clear from the graduated shading that many of the replicated data sets are concentrated around the posterior
mean, some replicated data set were even able to capture some noisier data points. For example, there are
some observed data points around t = 2 that deviate somewhat from the rest of the points in the same region,
but the model was able to generate data that also capture those data points. A good example of this is
observed data point (2.32670030, 4.2000518), as some generated data points at t = 2.32 were close to 4.2. We
can also quickly examine the ppc_dens_overlay plot to see how the density estimate of the observed data
compares to that of our replicated data sets:

0 5 10 15 20

y
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Figure 11: Estimated density of y vs replicated dataset density - model 1

From the plot we see that the model performed poorly in replicating the density of y values around 5, i.e.,
the replicated data sets had a higher density of values around 5 than the observed one. There also appears to
be less density around values of 10 than the observed data set and values around 20, but this was far better
in comparison to values around 5. The model appears to perform fairly well on both tails, even capturing the
dip in density of y values around 15. Overall, the density of replicated data sets are similar to those of the
observed data set for the majority of y values, giving us evidence that our model is a good fit for the data.

While this seems to be a sign of good model performance, we should be concerned with possible overfitting as
being able to generate predictions close to every observed data point is suspect. As such, we have plotted the
PSIS plot generated from our leave one out cross validation:
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Figure 12: PSIS Plot - model 1

From the PSIS plot, we gather that our k̂ values are good for all data points, using the k̂ < 0.5 rule. So it
seems that we have a well fit model for our observed data set, and we should not be too concerned about
overfitting. In fact, our highest k̂ value is only about 0.3, and most of the k̂ values fall within the range
of -0.1 to 0.2, so we conclude that our LOO predictive distributions are similar to our full data predictive
distribution (no influential points). Considering the rest of our analysis in this section, e.g., test statistic plots
and the ppc_dens_overlay plot, we have substantial evidence that our model is a good fit (and appropriate)
for the data.
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Model 2

We will again begin our model critique by examining the distributions of the µ, α parameters drawn from the
posterior distribution vs the prior distribution:
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Figure 13: Draws of mu and alpha from the posterior vs the prior - model 2

From the two plots above, we again see behaviour we expect to see with weakly informative prior; the posterior
distribution has decidedly less spread and stays within the prior. Like model 1, we have evidence that our
priors have a regularizing effect. Like model 1, so far we don’t have much evidence if any of prior-data conflict
as our scales on our prior distribution are sensible, and we haven’t grossly misunderstood the information
we were given about the data set. This story again changes when we look at the comparisons between the
distributions of draws of σ and β from the prior and posterior distributions:
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Figure 14: Draws of beta and sigma from the posterior vs the prior - model 2

We see that plot of β values has the distribution of posterior β values overlapping the very end of the right
tail of the values from the prior very similarly to model 1. We may also want to tune the beta prior as
suggested in model 1. The behaviour of σ shows evidence of prior-data conflict as the distribution of σ values
from the posterior are far away from those of the prior (only a small amount of overlapping density between
the right tail of the prior distribution and left tail of the posterior distribution), and the posterior distribution
is only somewhat less spread out.

Next, to evaluate our fit, we can again evaluate test statistics plots of min, max, and skewness (they’re
ancillary as we have normal distributions for model 2).

Looking at the min, max test statistic plots, we see:
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Figure 15: Test statistics plots of min, max - model 2

We gather that the model was somewhat able to capture the max of the observed data as T (y) is in the left
tail, while the model was unable to capture the min observed data. The skewness test statistic plot also
shows that the model was somewhat able to capture the skewness of the observed data:
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Figure 16: Test statistics plots of sknewness - model 2

It is worth noting that model 2 performed worse at capturing ancillary test statistics than model 1, and the
model’s failure to capture the min test statistic is a bit concerning.

Next, comparing the standard deviation of the prior predictive distribution with that of the posterior predictive
distribution, we see that the standard deviations from the posterior predictive distributions are smaller than
those from the prior predictive distribution, which is an indication of a good fit. This is in contrast to
model 1, as with model 2 we also see that the posterior distributions of µ and σ are different. In particular,
the posterior distribution of µ has a similar shape and centre to the prior distribution, and the posterior
distribution of σ has some overlap with the prior. So in this respect, model 2 exhibits behaviour we expect
from a well fit model in comparison to model 1. A plot of distributions generated from the posterior predictive
distribution can be found in the appendix under “Model 2 posterior plots” for reference.

Next, we’ll examine the time course plot:
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Figure 17: Time course plot - model 2

From the time course plot, we see that there is a lot of variation in the replicated data sets until around 0.5,
where the replicated data sets get more concentrated around the mean from the posterior distribution. In
fact, when −1 ≤ t < 0.5 the replicated data sets have an incredibly wide spread with some replicated data
sets predicting values of about 30 on the high end to 10 on the low end, which isn’t totally unexpected since
our prior predictive distribution generated improbable y values, e.g., y > 50. Additionally, it is encouraging
to see from the shading that the majority of the replicated data sets are concentrated where there is a high
density of observed data too; the model doesn’t appear to be severely underfitting, i.e., biased.

We can also quickly examine the ppc_dens_overlay plot as we did with model 1 to see how the density
estimate of the observed data compares to that of our replicated data sets:
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Figure 18: Estimated density of y vs replicated dataset density - model 2

Immediately, we see the large variation in the replicated data sets that we observed in the time course plot.
It’s especially notable that the replicated data sets had density in values near and above 30, which did not
exist in the observed data set or model 1. Additionally, we see that this model does not capture the behaviour
of the observed data density curve especially the “up-down dip” around y values of 15 very well. While
some of the replicated data sets do appear to replicate that behaviour, most don’t appear to; as a whole
the replicated data sets show a pretty homogeneously smoothly decreasing right tail. Model 2 does seem
to be able to replicate the peak in density of y values around 5 though. It appears that model 2 cannot
capture some of the granularity in the data well given it’s behaviour we’ve observed in the time course plot
and in this plot. We’ll now examine the PSIS plot to see how the model performed with cross validation and
conclude if the model fit the data well and if it is an appropriate model:
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Figure 19: PSIS Plot - model 1

From our PSIS plot we see that there is one data point that has a particularly high k̂ value of over 0.6. There
is also one that has a k̂ value that is close to 0.5 (≈ 0.45). The majority of the data points had k̂ values
of around -0.1 to 0.2 though. Between our one influential point and one nearly influential point, we have
some evidence that this model was not a particularly good fit for the observed data, and perhaps it was
not able to capture some of the granularity of the data, leading it to worse predictions through our cross
validation procedure. Our results here are in stark contrast to model 1’s PSIS plot, where the highest k̂ value
was around 0.3.

In the next section, we’ll take our analysis of model 1 and model 2 and decide on which model was superior
for our observed data set.

Comparison of models: picking the superior model
Quick note: while we’ve already touched base on how model compares in the individual critiques, we’ll
expand upon it here explicitly as it’s more natural to do so in a comparison section rather than the individual
critiques sections.

Since the prior vs posterior plots of the parameters for both models were relatively similar, we’ll begin this
section with the test statistic plots. From the min, max, skewness test statistics, we gather that both models
were able to capture the test statistics. Model 2 was worse at doing so, especially when it came to the min
test statistic, and it’s worth noting that model 1’s test statistic distributions had centres really close to the
test statistics generated from the observed data. So from the test statistic plots, we have some evidence that
model 1 was a more appropriate model.

Our haunch carries over to time course plots and density overlay plots. Starting with the time course plots,
we see that model 1’s replicated data sets were far less spread out than model 2. In fact, the concentration of
the replicated data sets closely matched the concentration of the data points; it’s pretty clear that model
1 was a good fit. While model 2 also seemed like a good fit for values where t > 0.5, there was a lot more
variation in the replicated data sets where t ≤ 0.5. This trend carried over to the density overlay plots as
with model 1, the distribution of replicated data sets were both very tightly grouped and shaped, mostly
resembling the density estimate of the observed data. Whereas with model 2, the distribution of replicated
data sets were not very tightly grouped and had varying shapes, and did not really resemble the density
estimate of the observed data, e.g., did not have a dip in density around y values of 15. From these two
sets of plots, we have more evidence that model 1 was the superior model for this data set. Our PSIS plots
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further confirmed this as model 2 had one influential point as determined by our k̂ values, while model 1 did
not have any, indicating once again that model 1 was a more appropriate model for our data.

Finally, we’ll examine our ELPD values to further evaluate the predictive ability of our models:

Table 1: loo_compare results

elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic
model1 0.00000 0.00000 -180.6318 15.89802 5.613154 1.163438 361.2637 31.79604
model2 -21.59582 14.79194 -202.2276 13.07534 5.916663 2.674633 404.4553 26.15068

Here we see that model 1 has a smaller (less negative) ELPD than model 2. Since ELPD can be considered
similar to squared error (and scaled squared error in the case of a normal distribution), model 1 seems to have
better predictive ability (-180.63 vs -202.23) as it could predict data closer to our observed data during cross
validation. However, it is worth noting that the standard error of the difference is 14.79, so the difference in
ELPD between the two models isn’t that significant. Still, provided that model 2 had an influential point
and generally higher k̂ values (including our posterior predictive check plots, e.g., time course or test statistic
plots), it seems that we have more evidence pointing to model 1 being a superior (and more appropriate)
model for this data set.
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Appendix
Additional plots
Model 1 prior plots
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Figure 20: Histograms generated using the prior distribution with the smallest t - model 1

Larger sized plots of the distribution of mu[1] and y_pred[1].

Model 1 posterior plots
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Figure 21: Histograms generated using the posterior distribution with the largest t - model 1

Larger sized plots of the distribution of mu[100] and y_pred[100].
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Figure 22: Distributions from posterior predictive distribution, top left corresponds to smallest t, bottom
right corresponds to largest t - model 1

Model 2 prior plots
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Scatterplot of log(y) vs t

Figure 23: Scatterplot of log(y) on t - model 2

Note that the above plot should and will only be used for visualization purposes, not for
determining priors!
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Figure 24: Histograms generated using the prior distribution with the smallest t - model 2

Larger sized plots of the distribution of mu[1] and y_pred[1].

Model 2 posterior plots
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Figure 25: Histograms generated using the posterior distribution with the smallest t - model 2

Larger sized plots of the distribution of mu[1] and y_pred[1].
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Figure 26: Distributions from posterior predictive distribution, top left corresponds to smallest t, bottom
right corresponds to largest t - model 2

Code appendix
R Code

# library imports
library(cmdstanr)
library(loo)
library(tidyverse)
library(posterior)
library(bayesplot)
library(latex2exp)
library(reshape2)
library(gridExtra)
library(PerformanceAnalytics)

register_knitr_engine(override = TRUE)

data <- readRDS("hw1_data.RDS")
data <- data[order(data$t),]
data_list <- list(N=length(data$y),

y=data$y ,t = data$t) # model 1
data_list2 <- list(N=length(data$y),

y=log(data$y), t = data$t) # model 2

data %>% ggplot(aes(x=t, y=y)) +
geom_point()+
labs(x="t", y="y",

title = "Scatterplot of y vs t")+theme_minimal()

mod1 <- cmdstan_model("model1.stan", compile = TRUE)

data_list$only_prior = 1

data_list$mu_alpha = 1.98383
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data_list$mu_beta = -1.07079
data_list$mu_sigma = 0.0

data_list$tau_alpha = 0.268585
data_list$tau_beta = 0.107434
data_list$tau_sigma = 0.069245

prior_fit <- mod1$sample(data_list, seed = 365,refresh = 0)

prior_fit$summary()

mu_draws <- prior_fit$draws(c("mu[1]", "mu[10]", "mu[20]", "mu[30]", "mu[40]",
"mu[50]", "mu[60]", "mu[70]", "mu[80]",
"mu[90]", "mu[100]"))

pred_draws <- prior_fit$draws(c("y_pred[1]", "y_pred[10]",
"y_pred[20]", "y_pred[30]",
"y_pred[40]", "y_pred[50]",
"y_pred[60]", "y_pred[70]",
"y_pred[80]", "y_pred[90]",
"y_pred[100]"))

mod2 <- cmdstan_model("model2.stan", compile = TRUE)

data_list2$only_prior = 1

data_list2$mu_alpha = 1.98383
data_list2$mu_beta = -1.07079
data_list2$mu_sigma = 0.0

data_list2$tau_alpha = 0.268585
data_list2$tau_beta = 0.107434
data_list2$tau_sigma = 0.052682

prior_fit2 <- mod2$sample(data_list2,seed = 365, refresh = 0)

mu_draws_m2 <- prior_fit2$draws(c("mu[1]","mu[10]",
"mu[20]", "mu[30]", "mu[40]",
"mu[50]", "mu[60]", "mu[70]",
"mu[80]", "mu[90]", "mu[100]"))

pred_draws_m2 <- prior_fit2$draws(c("y_pred[1]", "y_pred[10]", "y_pred[20]",
"y_pred[30]", "y_pred[40]", "y_pred[50]",
"y_pred[60]", "y_pred[70]", "y_pred[80]",
"y_pred[90]", "y_pred[100]"))

mcmc_hist(pred_draws)+scale_fill_manual(values=c(color_scheme_get()$light))
mcmc_hist(mu_draws)

mcmc_hist(pred_draws_m2)+scale_fill_manual(values=c(color_scheme_get()$light))
mcmc_hist(mu_draws_m2)
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data_list$only_prior = 0

fit <- mod1$sample(data_list, seed = 365,refresh = 0)

#fit$summary()
mu_draws_post <- fit$draws(c("mu[1]", "mu[10]", "mu[20]", "mu[30]", "mu[40]",

"mu[50]", "mu[60]", "mu[70]",
"mu[80]", "mu[90]", "mu[100]"))

pred_draws_post <- fit$draws(c("y_pred[1]", "y_pred[10]", "y_pred[20]",
"y_pred[30]", "y_pred[40]", "y_pred[50]",
"y_pred[60]", "y_pred[70]", "y_pred[80]",
"y_pred[90]", "y_pred[100]"))

model1_loo <- fit$loo(save_psis=TRUE)
# class example code
ypreds_m1 <- fit$draws() %>% reshape2::melt() %>%

filter(str_detect(variable, "y_pred") ) %>%
extract(col = variable, into = "ind",

regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE)

ypreds_m1 <- ypreds_m1 %>%
mutate(time = data_list$t[ind],

chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused") %>%

rename(y_pred = value)

mu_posterior<-melt(
as_draws_matrix(subset_draws(fit$draws(), regex =TRUE, variable = "mu"))) %>%
mutate(variable = str_replace_all(variable,

pattern="mu.*",
replacement = "posterior"))

mu_prior <- melt(as_draws_matrix(subset_draws(prior_fit$draws(), regex =TRUE,
variable = "mu"))) %>%

mutate(variable = str_replace_all(variable, pattern="mu.*", replacement = "prior"))

mu_comparison_df <- rbind(mu_prior, mu_posterior)

mu_plt <- ggplot(mu_comparison_df,aes(x=value, fill = variable)) +
geom_histogram(alpha=1) +
scale_fill_manual(

values=c(color_scheme_get()$mid_highlight,
color_scheme_get()$light_highlight)) +

theme_minimal() + theme(legend.position=c(.85, .65)) + labs(x="mu")

alpha_posterior<-melt(as_draws_matrix
(subset_draws(fit$draws(),

regex =TRUE, variable = "alpha"))) %>%
mutate(variable = str_replace_all(variable, pattern="alpha*",

replacement = "posterior"))
alpha_prior <- melt(as_draws_matrix(subset_draws(prior_fit$draws(),

regex =TRUE,
variable = "alpha"))) %>%
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mutate(variable = str_replace_all(variable, pattern="alpha*",
replacement = "prior"))

alpha_comparison_df <- rbind(alpha_posterior, alpha_prior)

alpha_plt <- ggplot(alpha_comparison_df,aes(x=value, fill = variable)) +
geom_histogram(alpha=1) +
scale_fill_manual(values=c(color_scheme_get()$mid_highlight,

color_scheme_get()$light_highlight)) +
theme_minimal() + theme(legend.position=c(.85, .65)) + labs(x="alpha")

beta_posterior<-melt(as_draws_matrix(
subset_draws(fit$draws(), regex =TRUE,

variable = "beta"))) %>%
mutate(variable = str_replace_all(variable, pattern="beta*",

replacement = "posterior"))
beta_prior <- melt(as_draws_matrix(

subset_draws(prior_fit$draws(), regex =TRUE, variable = "beta"))) %>%
mutate(variable = str_replace_all(variable, pattern="beta*",

replacement = "prior"))

beta_comparison_df <- rbind(beta_posterior, beta_prior)

beta_plt <- ggplot(beta_comparison_df,aes(x=value, fill = variable))+
geom_histogram(alpha=1) +
scale_fill_manual(values=

c(color_scheme_get()$mid_highlight,
color_scheme_get()$light_highlight)) +

theme_minimal() + theme(legend.position=c(.15, .70))+ labs(x="beta")

grid.arrange(mu_plt, alpha_plt, ncol = 2)

sigma_posterior<-melt(as_draws_matrix(
subset_draws(fit$draws(), regex =TRUE,

variable = "sigma"))) %>%
mutate(variable =

str_replace_all(variable,
pattern="sigma*",
replacement = "posterior"))

sigma_prior <- melt(as_draws_matrix(subset_draws(
prior_fit$draws(), regex =TRUE, variable = "sigma"))) %>%
mutate(variable = str_replace_all(variable,

pattern="sigma*",
replacement = "prior"))

sigma_comparison_df <- rbind(sigma_posterior, sigma_prior)

sigma_plt <- ggplot(sigma_comparison_df,aes(x=value, fill = variable))+
geom_histogram(alpha=1) +
scale_fill_manual(values=c(color_scheme_get()$mid_highlight,

color_scheme_get()$light_highlight)) +
theme_minimal() +
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theme(legend.position=c(.35, .85))+ labs(x="sigma")
grid.arrange(beta_plt, sigma_plt, ncol = 2)

min_m1 <- ppc_stat(y = data$y, yrep=
as_draws_matrix(

subset_draws(fit$draws(),
regex =TRUE,
variable = "y_pred")),

stat = "min")
max_m1 <- ppc_stat(y = data$y, yrep= as_draws_matrix(

subset_draws(fit$draws(), regex =TRUE, variable = "y_pred")),
stat = "max")

grid.arrange(min_m1, max_m1, nrow = 2)

ppc_stat(y = data$y, yrep= as_draws_matrix(
subset_draws(fit$draws(), regex =TRUE, variable = "y_pred")),
stat = "skewness")

ypreds_m1[sample(nrow(ypreds_m1), 50000), ] %>%
ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data,

mapping = aes(t,y),
inherit.aes = FALSE) +

theme_minimal() +
labs(x="t", y = "y/y_pred")

ppc_dens_overlay(y = data$y,
yrep = head(as_draws_matrix(

subset_draws(fit$draws(),
regex =TRUE,
variable = "y_pred")), 50))

plot(model1_loo)

# model 2 posterior

data_list2$only_prior = 0

fit2 <- mod2$sample(data_list2,seed = 365, refresh = 0)

mu_draws_post_m2 <- fit2$draws(c("mu[1]", "mu[10]", "mu[20]", "mu[30]", "mu[40]",
"mu[50]", "mu[60]", "mu[70]", "mu[80]", "mu[90]",
"mu[100]"))

pred_draws_post_m2 <- fit2$draws(c("y_pred[1]", "y_pred[10]",
"y_pred[20]", "y_pred[30]",
"y_pred[40]", "y_pred[50]", "y_pred[60]",
"y_pred[70]", "y_pred[80]", "y_pred[90]",
"y_pred[100]"))

model2_loo <- fit2$loo(save_psis=TRUE)

# class example code
ypreds_m2 <- fit2$draws() %>% reshape2::melt() %>%
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filter(str_detect(variable, "y_pred") ) %>%
extract(col = variable, into = "ind",

regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE)

ypreds_m2 <- ypreds_m2 %>%
mutate(time = data_list$t[ind],

chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused") %>%

rename(y_pred = value)

mu_posterior_m2<-melt(as_draws_matrix(
subset_draws(fit2$draws(), regex =TRUE, variable = "mu"))) %>%
mutate(variable = str_replace_all(variable,

pattern="mu.*",
replacement = "posterior"))

mu_prior_m2 <- melt(as_draws_matrix(
subset_draws(prior_fit2$draws(), regex =TRUE, variable = "mu"))) %>%
mutate(variable = str_replace_all(variable,

pattern="mu.*",
replacement = "prior"))

mu_comparison_df_m2 <- rbind(mu_posterior_m2, mu_prior_m2)

mu_plt_m2 <- ggplot(mu_comparison_df_m2,aes(x=value, fill = variable)) +
geom_histogram(alpha=1) +
scale_fill_manual(values=c(

color_scheme_get()$mid_highlight,
color_scheme_get()$light_highlight)) +

theme_minimal() + theme(legend.position=c(.25, .65)) + labs(x="mu")

alpha_posterior_m2<-melt(as_draws_matrix(
subset_draws(fit2$draws(), regex =TRUE, variable = "alpha"))) %>%
mutate(variable = str_replace_all(

variable, pattern="alpha*", replacement = "posterior"))
alpha_prior_m2 <- melt(as_draws_matrix(

subset_draws(prior_fit2$draws(), regex =TRUE, variable = "alpha"))) %>%
mutate(variable = str_replace_all(

variable, pattern="alpha*", replacement = "prior"))

alpha_comparison_df_m2 <- rbind(alpha_posterior_m2, alpha_prior_m2)

alpha_plt_m2 <- ggplot(alpha_comparison_df_m2,
aes(x=value, fill = variable)) +

geom_histogram(alpha=1) +
scale_fill_manual(values=c(

color_scheme_get()$mid_highlight,
color_scheme_get()$light_highlight)) +

theme_minimal() + theme(legend.position=c(.25, .65)) + labs(x="alpha")

beta_posterior_m2<-melt(as_draws_matrix(
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subset_draws(fit2$draws(), regex =TRUE, variable = "beta"))) %>%
mutate(variable = str_replace_all(

variable, pattern="beta*", replacement = "posterior"))
beta_prior_m2 <- melt(as_draws_matrix(

subset_draws(prior_fit2$draws(), regex =TRUE, variable = "beta"))) %>%
mutate(variable = str_replace_all(

variable, pattern="beta*", replacement = "prior"))

beta_comparison_df_m2 <- rbind(beta_posterior_m2, beta_prior_m2)

beta_plt_m2 <- ggplot(beta_comparison_df_m2,aes(x=value, fill = variable))+
geom_histogram(alpha=1) +
scale_fill_manual(values=c(color_scheme_get()$mid_highlight,

color_scheme_get()$light_highlight)) +
theme_minimal() +
theme(legend.position=c(.25, .85)) +
labs(x="beta")

grid.arrange(mu_plt_m2, alpha_plt_m2, ncol =2 )

sigma_posterior_m2<-melt(as_draws_matrix(
subset_draws(fit2$draws(), regex =TRUE, variable = "sigma"))) %>%
mutate(variable =

str_replace_all(variable,
pattern="sigma*",
replacement = "posterior"))

sigma_prior_m2 <- melt(as_draws_matrix(
subset_draws(prior_fit2$draws(),

regex =TRUE, variable = "sigma"))) %>%
mutate(variable =

str_replace_all(variable,
pattern="sigma*",
replacement = "prior"))

sigma_comparison_df_m2 <- rbind(sigma_posterior_m2, sigma_prior_m2)

sigma_plt <- ggplot(sigma_comparison_df_m2,aes(x=value, fill = variable))+
geom_histogram(alpha=1) +
scale_fill_manual(values=c(

color_scheme_get()$mid_highlight,
color_scheme_get()$light_highlight)) +

theme_minimal() +
theme(legend.position=c(.35, .70))+
labs(x="sigma")

grid.arrange(beta_plt, sigma_plt, ncol = 2)

min_m2 <- ppc_stat(y = data$y, yrep= as_draws_matrix(
subset_draws(fit2$draws(), regex =TRUE, variable = "y_pred")), stat = "min")

max_m2 <- ppc_stat(y = data$y, yrep= as_draws_matrix(
subset_draws(fit2$draws(), regex =TRUE, variable = "y_pred")), stat = "max")

grid.arrange(min_m2, max_m2, ncol = 2)
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ppc_stat(y = data$y, yrep= as_draws_matrix(
subset_draws(fit2$draws(),

regex =TRUE, variable = "y_pred")),
stat = "skewness")

ypreds_m2[sample(nrow(ypreds_m2), 50000), ] %>%
ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data,

mapping = aes(t,y),
inherit.aes = FALSE) +

theme_minimal() +
labs(x="t", y = "y/y_pred")

ppc_dens_overlay(y = data$y,
yrep = head(as_draws_matrix(

subset_draws(fit2$draws(),
regex =TRUE,
variable = "y_pred")), 100))

plot(model2_loo)

knitr::kable(loo_compare(model1_loo, model2_loo),
caption = "loo_compare results")

# bonus plots

mu_1_draws <- prior_fit$draws(c("mu[1]"))
mu_1_draws_m1 <- mcmc_hist(mu_1_draws)

ypred_1_draws <- prior_fit$draws(c("y_pred[1]"))
ypred_1_draws_m1 <-mcmc_hist(ypred_1_draws)
grid.arrange(mu_1_draws_m1, ypred_1_draws_m1, ncol=2)

mu_1_draws <- fit$draws(c("mu[100]"))
mu_1_draws_m1 <- mcmc_hist(mu_1_draws)

ypred_1_draws <- fit$draws(c("y_pred[100]"))
ypred_1_draws_m1 <-mcmc_hist(ypred_1_draws)
grid.arrange(mu_1_draws_m1, ypred_1_draws_m1, ncol=2)

mcmc_hist(pred_draws_post)

log_plt <- data %>% ggplot(aes(x=t, y=log(y))) +
geom_point()+
labs(x="t",

y="log(y)",
title = "Scatterplot of log(y) vs t") +

theme_minimal()

log_plt
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mu_1_draws_m2 <- prior_fit2$draws(c("mu[1]"))
mu_1_draws_m2 <- mcmc_hist(mu_1_draws_m2)

ypred_1_draws_m2 <- prior_fit2$draws(c("y_pred[1]"))
ypred_1_draws_m2 <-mcmc_hist(ypred_1_draws_m2)
grid.arrange(mu_1_draws_m2, ypred_1_draws_m2, ncol=2)

mu_1_draws_m2 <- fit2$draws(c("mu[1]"))
mu_1_draws_m2 <- mcmc_hist(mu_1_draws_m2)

ypred_1_draws_m2 <- fit2$draws(c("y_pred[1]"))
ypred_1_draws_m2 <-mcmc_hist(ypred_1_draws_m2)
grid.arrange(mu_1_draws_m2, ypred_1_draws_m2, ncol=2)

mcmc_hist(pred_draws_post_m2)

Model 1 Stan code

data {
int<lower=0> N;
vector[N] y;
vector[N] t;

// prior params
real mu_alpha;
real mu_beta;
real mu_sigma;
real<lower = 0> tau_alpha;
real<lower = 0> tau_beta;
real<lower = 0> tau_sigma;

int<lower=0, upper = 1> only_prior;
}

parameters {
real alpha;
real beta;
real<lower=0> sigma;

}

transformed parameters{
vector[N] mu = exp(alpha+beta*t);

}

model {
// priors
alpha ~ normal(mu_alpha, tau_alpha);
beta ~ normal(mu_beta, tau_beta);
sigma ~ normal(mu_sigma, tau_sigma);

// likelihood
if (only_prior == 0){

y ~ normal(mu, sigma);
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}
}

generated quantities {
vector[N] log_lik;
vector[N] y_pred;
for (i in 1:N) {

log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
y_pred[i] = normal_rng(mu[i], sigma);

}
}

Model 2 Stan code

data {
int<lower=0> N;
vector[N] y; // log values of y
vector[N] t;

// prior params
real mu_alpha;
real mu_beta;
real mu_sigma;
real tau_alpha;
real tau_beta;
real tau_sigma;

int<lower=0, upper = 1> only_prior;
}

parameters {
real alpha;
real beta;
real<lower=0> sigma;

}

transformed parameters{
vector[N] mu = alpha+beta*t;

}

model {
// priors
alpha ~ normal(mu_alpha, tau_alpha);
beta ~ normal(mu_beta, tau_beta);
sigma ~ normal(mu_sigma, tau_sigma);

// likelihood
if (only_prior == 0){

y ~ normal(mu, sigma);
}

}
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generated quantities {
vector[N] log_lik;
vector[N] y_pred;
vector[N] y_lg;
for (i in 1:N) {

// change the scale of the support of log(y) distn
log_lik[i] = lognormal_lpdf(exp(y[i]) | mu[i], sigma);
// note that draws from normal distn are log predictions
// so we will need to undo the log
y_lg[i] = normal_rng(mu[i], sigma);
y_pred[i] = exp(y_lg[i]);

}
}
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