
csc343 winter 2021
assignment #3: database (re)design

due April 2nd, 4 p.m.

Eric Zhu and Kristin Huang

goals

This assignment aims to help you learn to:

• design a good schema

• understand violations of functional dependencies

• create a minimal basis for a set of functional dependencies

• project a set of functional dependencies onto a set of attributes

• find all the keys for a set of functional dependencies

• re-factor relation(s) into BCNF

• re-factor relations into 3NF

Your assignment must be typed to produce a PDF document a3.pdf, and a plain text document reservation.ddl
(hand-written submissions are not acceptable). You may work on the assignment in groups of 1 or 2, and
submit a single assignment for the entire group on MarkUs. You must establish your group well before
the due date by submitting an incomplete, or even empty, submission (of course, we only grade the last
submission before the due date/time).

exercises

1. Relation Reservation is meant to keep track of which skipper reserves which craft on which date, but
its design has some redundancy:

Reservation(sID; age; length; sName; day; cName; rating; cID)

. . . where sID identifies the skipper, sName is the skipper’s name, whereas rating and age record the
skipper’s skill (a number between 0 and 5, inclusive) and age (a number greater than 0). The reserved
craft is identified by cID, its name is cName, length is in feet, and the date and time the craft is
reserved for by the skipper is day. The following dependencies hold:1

S = fsID ! sName; rating; age; cID ! cName; lengthg

1Since multiple attributes may be separated by commas, we use semicolons to separate FDs.

1

https://markus.cdf.toronto.edu/csc343-2021-01


(a) Give one example of a redundancy that relation Reservation, combined with FDs S, allow.

sID age length sName day cName rating cID
1 21 150 Bob Ross 2020/1/1 12:00 HMS Liz 5 1
1 21 155 Bob Ross 2020/1/1 13:00 HMS James 5 2

Here we see that we have redundant sID, sName, rating, and age.

(b) Design a schema in DDL called reservation.ddl that represents the same information asReservation,
using exactly the same attribute names, but has the following goals, in descending order of im-
portance:

i. has as few redundancies as possible;
ii. allows as few NULL or DEFAULT values as possible;
iii. enforces as many constraints from the description above as possible, without using triggers

or assertions.

Your schema should import into psql without error using the command:

\i reservation.ddl

While you are developing your schema you may want to ensure that your previous version is
removed before you read in a new one:

drop schema if exists reservation cascade;
create schema reservation;
set search_path to reservation;

Use comments at the beginning of reservation.ddl to explain which constraints were not en-
forced (if any) and which redundancies are still allowed (if any). As the designer you have freedom
to choose datatypes for the various attributes.

Completed in Reservation.ddl as required. Please refer to that file for the solution.

2. Relation F has attributes KLMNOPQRS and functional dependencies G:

G = fKOQ! PS;L! KN;KQ! RSg

(a) Which FDs in G violate BCNF? List them.
Check if this non-trivial FD violate BCNF: KOQ -> PS. We check if KOQ is a superkey.

KOQ+ = fK;O;Q; P; S;Rg

Here we see that KOQ is not a superkey because the closure doesn’t contain all attributes. The
FD is also non-trivial, hence it violates BCNF.
Check if this non-trivial FD violate BCNF: L -> KN. We check if L is a superkey.

L+ = fL;K;Ng

Here we see that L is not a superkey because the closure doesn’t contain all attributes. The FD
is also non-trivial, hence it violates BCNF.
Check if this non-trivial FD violate BCNF: KQ -> RS. We check if KQ is a superkey.

2



KQ+ = fK;Q;R; Sg

Here we see that KQ is not a superkey because the closure doesn’t contain all attributes. The
FD is also non-trivial, hence it violates BCNF.
Answer: The FDs in G that violate BCNF are all the functional dependencies: KOQ -> PS, L
-> KN, KQ -> RS.

(b) Use the BCNF decomposition method to derive a redundancy-preventing, lossless, decomposition
of F into a new schema consisting of relations that are in BCNF. Be sure to project the FDs from G

onto the relations in your final schema. There may be more than one correct answer possible, since
there are choices possible at steps in the decomposition. List your final relations alphabetically,
and order the attributes within each relation alphabetically (this avoids combinatorial explosion
of the number of alternatives we have to check).
We pick KOQ -> PS to start the BCNF decomposition since this FD violates BCNF.

KOQ+ = fK;O;Q; P; S;Rg

Our initial relation F has attributes KLMNOPQRS.
R1 = KOQ+ = KOQPSR

R2 = F - KOQ+ + KOQ = KLMNOPQRS - KOQPSR + KOQ = KLMNOQ.
Now inspect the FDs to see if there are BCNF violations.

Part 1)
For R1 = KOQPSR, we project the functional dependencies: KOQ -> PS, KQ -> RS
BCNF violation testing for functional dependency KOQ -> PS:

KOQ+ = fK;O;Q; P; S;Rg

BCNF violation testing for functional dependency KQ -> RS:

KQ+ = fK;Q;R; Sg

So since KQ violates the BCNF condition, we will break R1 down further into Ra and Rb using
KQ -> RS.

Part 1A)
Let Ra = KQ+ = KQRS

Part 1B)
Then let Rb = R1 - Ra+ + Ra = KOQPSR - KQRS + KQ = KOQP
Then for Ra = KQRS, we project the functional dependency of KQ -> RS.
We test if the functional dependency KQ -> RS violates BCNF for Ra:

KQ+ = fK;Q;R; Sg

So we see KQ -> RS does not violate BCNF. Hence we can stop recursing at Ra.

3



Then for Rb = KOQP, we have the functional dependency KOQ -> P. This KOQ is a superkey
so we do not violate BCNF. Hence we can stop recursing.

Part 2)
Now we check to see if R2 need to be further decomposed. Our R2 = KLMNOQ. We can project
the functional dependencies: L -> KN onto R2.
Now we test to see if L -> KN violates BCNF with R2.

L+ = fL;K;Ng

Here L is not a superkey and L -> KN is non-trivial so this violates BCNF.
Then we can decompose R2 into Rc and Rd.

Part 2A) Let Rc = L+ = LKN

Part 2B) Let Rd = R2� L+ + L = LMOQ.
We project the functional dependency L -> KN onto Rc and test if it violates BCNF.

L+ = fL;K;Ng

L is a superkey for Rc so this functional dependency does not violate BCNF. Hence we can stop
recursing at Rc.
We cannot project any functional dependency onto Rd so we can stop recursing at Rd.

Final Answer: Organized alphabetically, we have:
Ra: attributes KLN, functional dependencies: L -> KN.
Rb: attributes KOPQ, functional dependencies: KOQ -> P
Rc: attributes KQRS, functional dependencies: KQ -> RS.
Rd: attributes LMOQ, no functional dependencies.

(c) Does your final schema preserve dependencies? Explain why you answer yes or no.
Yes, our final schema does preserve dependencies. Our final schema still have the FDs: L -> KN,
KQ -> RS. And we can also derive the FD KOQ -> PS.
Since we have the FD: KQ -> RS, then we can add an extra attribute on the left hand side so
that KOQ -> RS.
Our final schema also have the FD KOQ -> P, so combining these, we get: KOQ -> PRS. Hence
we can derive KOQ -> PS.

(d) BCNF guarantees a lossless join. However demonstrate this to a possibly-skeptical observer using
the Chase Test.
Assume a tuple t = (k; l;m; n; o; p; q; r; s).
We use these relations to create rows in the table:
Ra: attributes KLN, functional dependencies: L -> KN.
Rb: attributes KOPQ, functional dependencies: KOQ -> P.
Rc: attributes KQRS, functional dependencies: KQ -> RS.
Rd: attributes LMOQ, no functional dependencies.

4



K L M N O P Q R S
k l m1 n o1 p1 q1 r1 s1
k l2 m2 n2 o p q r2 s2
k l3 m3 n3 o3 p3 q r s
k4 l m n4 o p4 q r4 s4

Then we use the functional dependencies to modify the table. Using L -> KN, the last row is
changed to the version below.

K L M N O P Q R S
k l m1 n o1 p1 q1 r1 s1
k l2 m2 n2 o p q r2 s2
k l3 m3 n3 o3 p3 q r s
k l m n o p4 q r4 s4

Then using KOQ -> PS, we change the second row, last row to the version below.

K L M N O P Q R S
k l m1 n o1 p1 q1 r1 s1
k l2 m2 n2 o p q r2 s
k l3 m3 n3 o3 p3 q r s
k l m n o p q r4 s

Then using KQ -> RS, we change the second row, last row to the version below.

K L M N O P Q R S
k l m1 n o1 p1 q1 r1 s1
k l2 m2 n2 o p q r s
k l3 m3 n3 o3 p3 q r s
k l m n o p q r s

Then we see the last row is (k; l;m; n; o; p; q; r; s), so the tuple t = (k; l;m; n; o; p; q; r; s). Therefore
t 2 R so we have a lossless join.

Show us the steps in your work. This allows us to assign part marks, if needed, and to be sure that
you have not taken any unwarranted short cuts.

3. Relation R has attributes ABCDEFGH and functional dependencies S:

S = fACDE ! B;B ! CF;CD ! AF;BCF ! AD;ABF ! Hg

(a) Find a minimal basis for S. Your final answer must put the FDs in ascending alphabetical order,
and the attributes within the LHS and RHS of each FD into alphabetical order.

Breaking the right hand sides of the set of functional dependencies, S, we get:

S = fACDE ! B;B ! C;B ! F;CD ! A;CD ! F;BCF ! A;BCF ! D;ABF ! Hg

5



Now, we must find the minimal basis for S. We do so by computing the closure of each attribute
in the above left hand sides.

i. We get for A that A+ = fAg

ii. We get for B that B+ = fBCFADHg

iii. We get for C that C+ = fCg

iv. We get for D that D+ = fDg

v. We get for E that E+ = fEg

vi. We get for F that F+ = fFg

From the list above, we can reduce the LHS as follows, which we call S2:

i. CDE ! B because the closure of AB+ includes B.
ii. B ! C because it’s a singleton
iii. B ! F because it’s a singleton
iv. CD ! A because no singleton LHS yields anything
v. CD ! F because no singleton LHS yields anything
vi. B ! A because A is in the closure of B
vii. B ! D because D is in the closure of B
viii. B ! H because H is in the closure of B

Then we try to eliminate each FD:

i. CDE+

S2�i = CDE. We need this FD.
ii. B+

S2�ii = BFADH. We need this FD.
iii. B+

S2�iii = BCADHF . We don’t need this FD since we get F in the closure.
iv. CD+

S2�fiv;iiig = CDF . We need this FD.

v. CD+

S2�fv;iiig = CDA. We need this FD.

vi. B+

S2�fvi;iiig = BCADHF . We don’t need this FD since we get A in the closure.

vii. B+

S2�fvii;vi;iiig = BCAHF . We need this FD.

viii. B+

S2�fviii;vi;iiig = BCADF . We need this FD.

Our final set of FDs is:

i. CDE ! B

ii. B ! CDH

iii. CD ! AF

In other words, in set notation, we have:

S = fCDE ! B;B ! CDH;CD ! AFg

(b) Find all the keys for R using your solution for a minimal basis.

From lecture we learned that if an attribute doesn’t appear anywhere in the FDs, we must have
it in every key. The attribute that satisfies this rule is G. Then if an attribute appears in an
FD but never on a RHS, it will also have to be in every key, so therefore, E satisfies this rule.

6



Next, the attributes that only appear on the RHS is H, so H is not a key. That leaves us with
fA;B;C;D; Fg to consider.

So we check every possible combination of fA;B;C;D; Fg with E and G. Using the minimal basis
we know that the closure of B includes more than itself, and the closure of CD includes more
than itself. Thus we found the following two combinations.
BEG+ = ABCDEFGH

CDEG+ = ABCDEFGH

Since BEG and CDEG functionally determines all other attributes, meaning they are the keys of
R.

We conclude that our key is BEG and CDEG.

(c) Use the 3NF synthesis algorithm to find a lossless, dependency-preserving decomposition of re-
lation R into a new schema consisting of relations that are in 3NF. Your final answer should
combine FDs with the same LHS to create a single relation. If your schema has a relation that is
a subset of another, keep only the larger relation.

We can use the minimal basis in the 3NF synthesis algorithm.
For each FD below, we get one relation:

i. CDE ! B

ii. B ! CDH

iii. CD ! AF

Thus our relations:
R1(B, C, D, E), R2(B, C, D, H), R3(A, C, D F).
We see that none of the relations contain the keys BEG or CDEG. Hence we add one of the keys
as a relation.
Then we have (in alphabetical order):
R1(A, C, D F)
R2(B, C, D, E)
R3(B, C, D, H)
R4(B, E, G)

Functional Dependencies:

i. CDE ! B

ii. B ! CDH

iii. CD ! AF

(d) Does your solution allow redundancy? Explain how (with an example), or why not.

We formed each relation (R1; R2; R3; R4) from their respective FDs, so the LHS of those FDs are
superkeys for their respective relations as stated on the worksheet about 3NF. So we must project
the FDs onto each relation to test for redundancy.
Similarly to the worksheet, we see that B ! C and B ! D hold in R, and so B ! CD. And
that B ! CD will project onto relation R1, but the closure of B, i.e., B+ = BCDH, so B is not
a superkey of this relation. Thus, this schema allows for redundancy.

7



Show us the steps in your work. This allows us to assign part marks, if needed, and to be sure that
you have not taken any unwarranted short cuts.

submissions

Submit a3.pdf and reservation.ddl on MarkUs. One submission per group, whether a group is one or two
people. You declare a group by submitting an empty, or partial, file, and this should be done well before the
due date. You may always replace such a file with a better version, until the due date.

Double check that you have submitted the correct version of your file by downloading it from MarkUs.

8

https://markus.teach.cs.toronto.edu/csc343-2021-01

