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Question 1

a)

High level and data structure discussion:

Since each cell in the maze, e.g., the example maze, has possibly at least one direction, we
may view this as a directed graph, where each cell is one node and each node has possibly
more than one edge. A clearly sensible and relatively efficient solution would be to use BFS
with some augmented adjacency list because it is possible for us to move in the maze with
varying step sizes, d. So then, when we mutate d by landing on one of these red/yellow
cells, we see that our possible paths are different than those with our previous d, i.e., we
will consider different edges!

Given that this is inspired by Alice in Wonderland, we might view this as different ”floors”
in Wonderland. We find this to be a wonderful analogy in that floors in a building may
differ in layout, similar to how the different edges for each different d may lead to wildly
different looking graphs, so we will use this analogy throughout question 1.

In algorithmic terms, we need an accompanying adjacency list for each d we encounter. So
essentially, we’ll just need to run BFS starting with our ”source” node, moving to the
various appropriate adjacency lists for each d we encounter due to landing on either a red
or yellow cell. We will use the same BFS algorithm described in the CLRS textbook, giving
us an array of parents that we can later walk back through to the source and also an array
of distances from the source. By keeping track of the walk, we may output an array that is
exactly the shortest route Alice can take from the source to the goal. It will be comprised
of the vertices (nodes) Alice would take rather than the edges. We can also find the length
of the path by finding the appropriate entry for the goal in the distances from source array.

In the event that a solution can’t be found, the path array will be empty and the distance
value will be inf, i.e., float("inf").
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Algorithm:

Initialization

Given a text representation of the maze, we will first parse the text file to generate an
adjacency list containing all the vertices as well as all possible edges. That is, for each
vertex v in the adjacency list, we first calculate the corresponding one-indexed (x, y)
coordinates for v, and once we have all the coordinates, we are able to calculate all of the
possible edges for every possible d constrained to the grid size.

For example, suppose we have vertex v be the top left cell, i.e., v’s coordinates are (1, 1),
and a 3 by 3 maze. Additionally suppose that v has only an arrow pointing right (east),
then the adjacency list would be [(2,1)] when d = 1 and [(3, 1)] when d = 2. Since each d
has its corresponding own list for each v, we can store this information sensibly in a
dictionary, providing us O(1) average case retrieval and insertion. More clearly, for our
adjacency list, we provide each vertex with its own dictionary of possible edges, where the
key is the step size d and the value is the list of possible edges corresponding to that d.
Then we may add all of the vertices to an array to form our adjacency list, adj lst. Note
that for white cells (not to be confused with white coloured vertices during the BFS
algorithm) we just do not add them to the adjacency list so no edge will be created with
them.

As for implementation details, we will have a nested loop structure. In the outer loop, we
loop over all of the vertices provided to us in the maze representation. In the inner loop, we
construct all of the possible edges for a fixed vertex as described above. Specifically, we
loop over all 8 directions So we can see that the worst case running time is O(n2), where n
is the number of cells in the maze. An example of the worst case is a node in the centre of
the maze with arrows in all directions, which will lead to the inner loop having to construct
an edge for every vertex in the maze, leading to a running time of O(n).

Modified BFS

Since we have the adjacency list, we will be able to execute our BFS algorithm. Our
algorithm is largely based off of the algorithm provided in CLRS, with the additional
feature of being able to handle changes in d.

Stemming from the multiple ”floors” analogy above, we choose to implement many of our
data structures here as dictionaries with their keys being their coordinate and their values
being the corresponding list of values where the index minus 1 (to convert from
one-indexing to zero-indexing) is their value a particular d. Note that these lists for each
node has their size constrained to be the number of possible step sizes provided our
grid width, i.e., we cannot have more ”floors” than the number of step sizes. This allows
us to be consistent with our adjacency list, and allows us to handle the possible case where
Alice returns to one of her visited cells but on a different ”floor”. We will refer to this as
our list replacement data structure.
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We choose dictionaries because in the worst case we know that dictionary
accesses/insertions are O(n) and on average are O(1), so we won’t increase the overall
running time of our algorithm. Python additionally has hashing optimizations for its
dictionaries so dictionaries were a very appealing choice.

We chose to implement the initialization portion of the BFS algorithm according to CLRS,
i.e., we set each vertex’s distance to inf, colour to white, and parent to None. Note that we
chose to use our ”list replacement data structure” for the array of the colours of each node,
the array of distances from the source node, and the array of parents for each node. While
doing so, we are able to extract the source node by checking the colour of the cell and
seeing if it is ”start”, which is described more formally in part b.

With BFS initialization out of the way, we implement our BFS queue as an array because
we are only allowed to import the sys library and all queue operations can be done in O(n)
worst case using Python lists. Specifically, we implement ENQUEUE(Q,v) as
list.append(v), and we implement DEQUEUE(Q) as list.pop(0). Here, we introduce
another augmentation to the CLRS implementation of BFS. Since we have to consider d in
order to get the correct list of edges for some given vertex and d value, we instead enqueue
a tuple: (d, v), where d is the d value after any possible increments/decrements and v is
the corresponding node. Then, we enqueue the source node’s tuple, set the distance for the
source node to 0 for the corresponding initial d, and appropriately set the vertex colour to
”grey” for the corresponding initial d.

We then loop over the queue as described in CLRS until it is either empty or we find the
goal (which we check for at the end of the loop iteration). If we find the goal, we exit from
the loop.

Note that we differ from the CLRS implementation in one respect, and in this paragraph
we will refer variables using the variable names corresponding to the CLRS BFS
implementation. Our difference is that we take into consideration the colour of the cell
(node) and so we decrement/increment d appropriately for each v, which implies a few
implementation differences. As d varies, we may have two different d values for some
neighbour of u per iteration of the while loop, i.e., the original value corresponding to one
”floor” and the modified value corresponding to the new ”floor”. So then, we must set the
old ”floor’s” colour to ”grey” by accessing the appropriate values contained in our colour
”list replacement data structure” corresponding to the original d value. To update both the
parent and distance data structures, we must be wary of d unlike the CLRS implementation
as we need to set and get these values for and from the correct ”floor”. An example is
updating the parent data structure for the top left red cell in the example maze. In that
case, we would need to get the distance for u, node at (1,2), and use the value for d before
it was incremented by 1. We would then set the distance for v, node at (1,1), using the
incremented value for d.

Finally, if we exit the while loop because we have found the shortest path, we’ll need to
loop over the parents data structure to walk from the goal back to the source. Since we
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kept track of d for each v when we inserted v into the parents data structure, we know that
we can get the correct path, and we can easily get the distance of the path by finding the
entry in the distance data structure for our goal node.

b)

There are two sections in our representation of the maze.

The first section is the initialization of default values, in this case, the starting distance
travel distance, and the width of the maze grid width.

The format of the initial section is one single header line and two lines for the declaration of
the two values, travel distance=1 and grid width=3 for example. Note that an
additional line, grid height, may be added for rectangular mazes, but we are assuming
square mazes for the sake of this question.

The second section contains the maze entries.

The format of the maze section is also one single header line and grid width2 number of
lines each representing a square in the maze.

The maze squares are ordered from left to right and top to bottom and displayed in lines
from top to bottom. In other words, the first line under the maze header represents the top
left square of the maze, and the second line represents the square to the right of the top left
square, and so on and so forth.

Each line entry contains 8 bits indicating the directions of the arrows present in that
particular maze square. Each bit, from the left-most to the right-most, represents north,
south, west, east, northwest, northeast, southwest, and southeast, respectively.

Each line entry also contains the color or type of the arrow(s) in that particular maze
square. The color is separated from the 8 bits using a vertical separator. There are
additionally 3 colours of note: start, end, and white. The ”start” colour indicates the
”source” node, ”end” indicates the goal (where Alice wants to go), and ”white” indicates a
cell Alice may not land on.

For example, a line entry representing a maze square with red arrows pointing towards the
south, east and south east directions is as such:

0 1 0 1 0 0 0 1 | red

Whereas a line entry representing a starting square with arrows pointing towards the north
and west would look like:
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1 0 1 0 0 0 0 0 | start

To demonstrate, the following is our representation of the small maze shown in the question.

1 -- initial --

2 travel_distance =1

3 grid_width =3

4 -- maze --

5 0 1 0 1 0 0 0 1 | red

6 0 0 0 0 0 0 0 0 | end

7 0 0 0 0 0 0 1 0 | yellow

8 1 0 0 0 0 0 0 0 | black

9 1 0 0 0 0 0 0 0 | black

10 0 0 0 0 0 0 1 0 | black

11 1 0 0 1 0 0 0 0 | start

12 0 0 0 1 0 0 0 0 | black

13 1 0 0 0 0 0 0 0 | black

c)

Completed and uploaded to Markus as Alice.py.

d)

For our first test case (test1.txt), we will use a simple 3x3 maze that tests a variety of basic
scenarios, namely diagonal traversal, stepping off the maze with increment, and terminating
with a decrement to 0.

Here, we have a starting square on the bottom left that could seemingly find its way to the
right and reach the goal. However, the yellow arrow should decrease the step distance to 0
which would cause the BFS traversal of that path to terminate.

The second closest path would’ve been the diagonal path from the top left to the bottom
right through the center. However, the red arrow in the center should increment the step
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distance to 2 which would cause the path to step outside of the maze which is not a valid
move.

Therefore, the closest and only path would reach around to the top left, top right and back
down to the goal square while maintaining the starting step distance of 1.

And indeed, the output of our program shows a path length of 6 which follows the path
starting at matrix position (1,3) to (1,2) to (1,1) to (2,1) to (3,1) to (3,2), ending at our
goal (3,3). All indices are 1-indexed.

For our second test (test2.txt), we will test and demonstrate finding a path that requires
both increasing and decreasing the step distance to reach the goal.

In this maze, we are required to arrive at the red arrow twice to increase the step distance
to 3 in order to reach the yellow arrow that would eventually lead us to the goal after we
decrease back down to 1.

This means that in our algorithm, we must not mark a node as visited if we have changed
step distance as it is required in this case to arrive back at a ”visited” red arrow as well as a
”visited” yellow arrow.

In our program, we do discover this path that ”cycles” back to the red arrow to increase
the step distance once again from 2 to 3 which leads us to the top left and then the yellow
arrow on the top right. Similarly, our program discovers the need to cycle around and
revisit the yellow arrow to decrease the step distance back down to 1 in order for the final
singular steps that lead to the goal.

Our program outputs the correct path length 21 and the nodes that we visited in the order
of traversal.
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For our third test (test3.txt), we will introduce white squares to the maze which we must
not step into. Our program deals with this by not adding an edge to the adjacency list if it
ends with a white square.

In this maze, because of the white squares on the third row, we cannot step into the red
arrow on the bottom row early since crossing the white row requires a step distance of 2.
Therefore, the only way of reaching the end goal is by arriving at the red arrow on the top
half of the maze and crossing the white row.

This is verified by our program output which prints the path going from the top left,
turning at the third square of the first row, turning again at the third square of the second
row, and finally arriving at the red arrow that allows us to cross over to the goal. It also
correctly outputs the path length 5.

For our last test (test4.txt), we will test our program’s behavior with an unsolvable maze.

All BFS traversals for this graph would terminate for a step distance of 1 as nodes become
visited and a cycle is formed, and the red arrow causes us to step outside of the maze
boundary which will also terminate the program.
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Indeed, our program prints out ”No solution found” along with an empty path array and a
path distance of infinity.
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Question 2

(a)

Given the adjacency list of an undirected graph with 2n nodes, we know that there are n
nodes of degree one and n nodes of degree three in the cycle.

Main idea: start with a cycle node and mark it as the starting point, perform a modified
DFS (while making sure the properties of a sun are not violated) until we find an edge that
leads back to the starting node, and confirm that we have navigated the entire graph.

Algorithm pseudocode:

1 IS_SUN(G=(V,E)):

2 # initialization

3 for each v in V:

4 colour[v] = white

5 # global variables

6 leaf_count = 0

7 not_a_sun = false

8 vertex_end = null

9 vertex_start = FIND_VERTEX_START(G)

10 if vertex_start == null:

11 return false

12 # DFS search

13 DFS -VISIT(G, vertex_start)

14 # final check

15 if leaf_count == n and vertex_end != null and !not_a_sun:

16 return true

17 else

18 return false

19

20 FIND_VERTEX_START(G=(V,E)):

21 if number of (V[0],v) in E == 3:

22 return V[0]

23 else if number of (V[0], v) in E == 1:

24 # check its only neighbor

25 u = neighbor of V[0]

26 if number of (u,v) in E == 3:

27 return u

28 else:

29 return null

30 else:

31 return null

32

33 DFS -VISIT(G=(V,E),u):

34 colour[u] = grey

35 # validate neighbor count

36 neighbor_count = number of (u,v) in E

37 local_leaf_count = 0
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38 if neighbor_count == 1:

39 leaf_count ++

40 else if neighbor_count != 3:

41 not_a_sun = true

42 # examine edges

43 for each (u,v) in E:

44 if not_a_sun:

45 return 0

46 if v == vertex_start:

47 # completed cycle

48 vertex_end = u

49 if colour[v] == white:

50 local_leaf_count += DFS -VISIT(G,v)

51 colour[u] = black

52 # validate leaf count

53 if local_leaf_count != 1 and neighbor_count != 1:

54 not_a_sun = true

55 # return 1 if current vertex is a leaf

56 if neighbor_count == 1:

57 return 1

58 else:

59 return 0

Explanation:

We first perform an initialization that marks every vertex white and define three global
variables:

1. Integer variable that counts the number of nodes of degree one (we will call them leaves)
that we have traversed.

2. Boolean variable that indicates that the graph is not a sun and should terminate early

3. Variable that stores the vertex that leads back to the starting vertex

Then we do an initial search for the first cycle node by going to the first vertex on the list
and checking the number of neighbors:

- If it contains exactly 3 neighbors, we mark that vertex as the starting node

- If it contains exactly 1, we traverse to its only neighbor and check if that vertex has
exactly three neighbors: if it does, mark that vertex as the starting node; otherwise, we can
conclude that the graph is not a sun.

- If it contains neither 1 nor 3 neighbors, we can conclude that the graph is not a sun

Now that we have found our starting vertex, we are ready to do DFS with that as our
starting point.
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Instead of looping through each vertex and performing DFS-VISIT given they are still
marked white, we will do a single recursive DFS-VISIT call to the starting vertex because a
sun should be a single connected graph.

DFS-VISIT:

For each DFS-VISIT call, we first colour the current vertex grey, initialize a local leaf count
variable, and examine its neighborhood. For the graph to be a valid sun, each vertex must
contain either 1 or 3 neighbors. If it contains exactly 1 neighbor, then we increment the leaf
count; if it contains neither 1 nor 3 neighbors, then we set not a sun to true. (Line 34-38)

Once we have validated the vertex, we will loop through its neighbors and examine them.
(Line 43-50)

First, if not a sun has been set to true, the function will return early. We have this check
inside the for loop so that any future DFS-VISIT that sets not a sun to true will cause each
recursion backtrack to return early as well.

We also check if one of the neighbors is the starting vertex and set vertex end to the current
vertex if it is. Lastly, if the neighbor vertex has not been visited (colour white), we call a
recursive DFS-VISIT on that vertex and increment local leaf count by its return value.

After we have visited and recursed through every neighbor, we colour the current vertex
black and validate that we have exactly one neighbor leaf (given the current vertex is not a
leaf itself), setting not a sun to true if it does not. (Line 51-54)

Finally, we will return 1 if the current vertex is a leaf and 0 otherwise. (Line 56-59)

Back to main program:

After the main DFS-VISIT call returns, the program could be in two states:

- not a sun was set to true in which case the main function returns false.

- Every vertex connected to the starting vertex is traversed and meets the vertex
requirements for a sun.

For the latter scenario, we then need to check if the leaf count equals n and a cycle back to
the starting vertex is found.

If both conditions are satisfied and not a sun is false, then we conclude that the graph is a
sun and return true.
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b)

Since we know that there is a single cycle of length n in the graph, there must be at least n
vertices in the cycle. And since each vertex in the cycle is connected to exactly 1 node of
degree one, there must be at least n vertices of degree one. Because there are a total of 2n
vertices, there must be exactly n vertices in the cycle and n connected vertices of degree
one.

Additionally, since each vertex in the cycle contains 2 neighbors that are also vertices part
of the cycle and exactly 1 neighbor of degree one, they must have degree 3.

In our algorithm, we perform a single DFS starting from a vertex in the cycle. We examine
every connected vertex and make sure that they are either a vertex of degree one or vertex
of degree 3 and that each vertex of degree 3 has exactly one neighbor of degree one. If any
of these properties fails, the program will return false.

After we have examined every connected vertex, each vertex must have satisfied the above
requirements for the program to return true. Then, we will verify that we have discovered
the vertex that would complete the cycle during our DFS. Lastly, we check if the total
number of nodes of degree one that we have discovered is n. If all these conditions are
satisfied, we return true.

Therefore, the only way for our algorithm to return true is if we have visited exactly n
vertices of degree one and every other visited vertex has degree three. Since the n vertices
have degree one, they each must be connected to exactly one vertex. And because we have
verified that each vertex of degree three is connected to exactly one node of degree one,
there must be n vertices of degree 3 that are connected. Finally, because we have verified
that a vertex that connects back to the starting vertex has been discovered, we can
conclude that a cycle exists and the graph is a sun.

(c)

For our initialization, we loop through the list of vertices so it will cost 2n = Θ(n) time.

For finding our starting vertex, we examine the neighbors of the first vertex and possibly
the neighbors of its neighbor. For each of the two vertices, we stop if we find out that there
are more than 3 neighbors, so its worst-case runtime is 2× 3 = 6 = Θ(1).

For the main DFS search, we traverse through all the vertices that are connected to the
starting vertex at most once each because we mark every visited vertex. In the worst case,
all vertices are connected and we would visit 2n vertices. For each DFS-VISIT of those 2n
vertices, we look through their adjacency list and stop if there are more than 3 neighbors.
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Therefore, we examine at most 3 neighbors for each of the 2n vertices, so the worst-case
runtime is 2n× 3 = 6n = Θ(n).

The final check of the main program is in constant time, so adding together the previous
three sections, the total runtime of the program is O(n).
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Question 3

(a)

This data structure runs out of money after the 41st INSERT operation. Figure on next
page.
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(b)

We will prove that it never runs out of money.

Proof by induction:

Let b ∈ Z+ be the initial capacity and the capacity increment.

Assume that the charge starts with $3 per INSERT and increases by $2 after each multiple
of b calls to INSERT.

This means every INSERT call between the (kb + 1)-th and the (k + 1)b-th (inclusive) will
be charged $3 + 2k where k ∈ N.

Assume that a non-array-growing INSERT costs $1 and every (kb + 1)-th INSERT call
costs $2kb + 1 (similar to the lecture notes for dynamic array).

Credit Invariant: When the array needs to grow, the current credits are enough to cover
the difference between the charge and the cost of the array-growing INSERT call.

In other words, define predicate P (n) : the amount of credits left after nb + 1 INSERT
operations is greater or equal to 0.

WTP: ∀n ∈ Z+, P (n)

Justification for this being sufficient: we are only concerned with the (nb + 1)-th
INSERT operations (where n is a positive integer) because those have the expensive costs
that require growing the array, whereas all other INSERT operations cost $1 but are
charged 3 + 2k so the money would never run out during those operations. Therefore, if we
prove that the remaining credits after each (nb + 1)-th INSERT operation are greater or
equal to 0, then we have effectively proven that the credits never run out.

Base case: n = 1, WTS: P (1)

After the first b INSERT operations, the array will be filled and we will have (3− 1)b = 2b
credits left (3 was the charge and 1 was the actual cost).

When we execute the (b + 1)-th INSERT operation which is an array-growing operation,
the charge is 3 + 2k = 5 when the actual cost is 2kb + 1 = 2b + 1.
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Since we had 2b credits after the first b INSERT operations,

the amount of credits left = previous credits + charge of INSERT− cost of INSERT

= 2b + 5− (2b + 1)

= 4 ≥ 0 =⇒ P (1)

Induction step: Assume P (n), WTS: P (n + 1)

From the induction hypothesis, we assume P (n) holds. Therefore, after nb + 1 INSERT
operations, we have 0 or more credits left.

Since we know that the (kb + 1)-th INSERT grows the array by b, the next array-growing
operation will be the (nb + 1) + b = [(n + 1)b + 1]-th INSERT. Therefore, every INSERT
between the (nb + 2)-th and the (n + 1)b-th (inclusive) is non-array-growing, costs $1 each
and is charged 3 + 2n.

This means that we have b− 1 operations that cost $1 each and are charged 3 + 2n. So,
after (n + 1)b operations, we will have (3 + 2n− 1)(b− 1) = 2(n + 1)(b− 1) extra credits.

When we execute the [(n + 1)b + 1]-th INSERT operation, the array needs to grow and the
charge becomes 3 + 2k = 3 + 2(n + 1) and the cost is 2kb + 1 = 2(n + 1)b + 1.

Therefore, after the [(n + 1)b + 1]-th INSERT operation,

The amount of credits left = previous credits + charge of INSERT− cost of INSERT

= 2(n + 1)(b− 1) + [3 + 2(n + 1)]− [2(n + 1)b + 1]

= 2(n + 1)b + 3− 2(n + 1)b− 1

= 2 ≥ 0 =⇒ P (n + 1)

�

c)

We begin our aggregate analysis by splitting up our problem. From the question, we know
that we have m ∈ N INSERT operations, starting with an empty array. We are additionally
given b ∈ N, which is both the initial capacity and the capacity increment. So then, like the
dynamic array example from class, we know that the costly non-constant time INSERT

operations come from the dynamic array expansion (due to a full array). As such, we will
aim to find both the exact cost of each array expansion and the times the array expands in
m INSERT operations so that we are able to accurately find the exact cost of m INSERT

operations for a given b.
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First, suppose we have call i ∈ N, i ≤ m (the ith call), where call i causes the array to
expand. For example, if b = 10,m = 20 and if i = 11, we would see an expansion. At call i,
we would need to perform a few tasks as seen in week 7 lectures:

1. Allocate space for all i− 1 elements

2. Insert all i− 1 elements in new array

3. Insert new element

Tasks 1 and 2 would take the same amount of time since they would operate on the same
number of elements (i− 1 elements), and allocating space for an elements/inserting a value
into a memory address are both constant time operations that cost 1 operation each. Since
we know at call i we have exactly i− 1 elements total (one element inserted per call), we
know that there would be exactly 2(i− 1) operations to both allocate space for i− 1
elements and insert all i− 1 elements into the new array. Then, it would take exactly 1
operation to insert the new element. So the total cost for call i would be exactly
2i− 2 + 1 = 2i− 1.

On the other hand, when INSERT does not cause an array expansion, we find that the total
cost is simply 1: the cost it takes to insert the element into memory. Therefore, we can form
the set of equations to describe the cost of INSERT for the kth call in our sequence of m calls:

tk =

{
2k − 1 if an array expansion is needed

1 otherwise

Our last missing piece to this solving this problem is finding the number of array
expansions. So recall that we have m total INSERT operations with an initial capacity and
capacity increment of b. Since our initial capacity is b, we would first need b insert calls in
order to fill up our original array, then we would need to increase the capacity of the array
on the next call, i.e., b + 1 calls. With this in mind, we can come up with the exact number
of array expansions. So we increment by a constant amount, b, we know that it will always
take exactly b insertions after an array expansion to cause another array expansion. Thus,
we know that

⌈
m
b

⌉
accounts all currently filled arrays and the possibly partially filled array

caused by the most recent array expansion. In other words, the
⌈
m
b

⌉
filled arrays account

for every array expansion as we must have an array expansion to have a filled array with
one big caveat. The caveat is

⌈
m
b

⌉
over counts the number of expansions because as noted

above, our first array expansion takes b + 1 calls due to being given an initial size of b, so
we must do

⌈
m
b

⌉
− 1 to find the number of array expansions. Clearly, we’d get a negative

number of we have m = 0, but in that case, we just note that the cost is 0.

Now we can create a equation to find the total cost of m operations, T (m):

18



Xiao Owen Hu, Eric Zhu Problem Set 3

T (m) =
m∑
k=1

tk

=

dmb e−1∑
i=1

2 · b · i− 1 +
m∑

i=dmb e
1 (Split the m operations according to cost)

= 2b

dmb e−1∑
i=1

i−
dmb e−1∑

i=1

1 +
m∑

i=dmb e
1

= 2b ·
(
⌈
m
b

⌉
− 1)(

⌈
m
b

⌉
)

2
−
dmb e−1∑

i=1

1 +
m∑

i=dmb e
1

= b · (
⌈m
b

⌉
− 1)(

⌈m
b

⌉
)− (

⌈m
b

⌉
− 1) + (m−

⌈m
b

⌉
)

Note that when we split the m operations according to cost above, we transform the
bounds of our summations into the counts for the respective costs.

Then we see from above that since our operation count is in terms of m, the last terms of
the equation above, i.e., (

⌈
m
b

⌉
− 1), (m−

⌈
m
b

⌉
) are Θ(m). So we rewrite the above equation

as:

b · (
⌈m
b

⌉
− 1)(

⌈m
b

⌉
)−Θ(m) + Θ(m)

Then we’ll examine the first term, i.e., b · (
⌈
m
b

⌉
− 1)(

⌈
m
b

⌉
). We will rewrite it as:

(b
⌈m
b

⌉ ⌈m
b

⌉
− b
⌈m
b

⌉
)

We can clearly see that b
⌈
m
b

⌉ ⌈
m
b

⌉
is a higher order term than

⌈
m
b

⌉
b, so we will only

consider b
⌈
m
b

⌉ ⌈
m
b

⌉
as we wish to obtain a big-Theta bound.

By the definition of ceiling from CSC165 we know that m
b
≤
⌈
m
b

⌉
< m

b
+ 1. Therefore, we

can bound b
⌈
m
b

⌉ ⌈
m
b

⌉
using the definition of floor:

b
⌈m
b

⌉ ⌈m
b

⌉
⇐⇒ b(

m

b
)2 ≤ b

⌈m
b

⌉ ⌈m
b

⌉
< b(

m

b
+ 1)2
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b(
m

b
)2 ≤ b

⌈m
b

⌉ ⌈m
b

⌉
< b(

m

b
+ 1)2

⇐⇒
m2

b
≤ b

⌈m
b

⌉ ⌈m
b

⌉
< b((

m

b
)2 + 2

m

b
+ 1)

⇐⇒
m2

b
≤ b

⌈m
b

⌉ ⌈m
b

⌉
<

m2

b
+ 2m + b

Thus we see that in terms of big theta, we have that both of the bounds of b
⌈
m
b

⌉ ⌈
m
b

⌉
are in

Θ(m2) as m2

b
∈ Θ(m2) and m2

b
+ 2m + b ∈ Θ(m2). Therefore, we can say that

b
⌈
m
b

⌉ ⌈
m
b

⌉
− b
⌈
m
b

⌉
∈ Θ(m2) as we noted above that b

⌈
m
b

⌉
is a lower order term. So then

plugging in our Θ(m2) bound for b
⌈
m
b

⌉ ⌈
m
b

⌉
− b
⌈
m
b

⌉
, we obtain this expression for T (m)

using our partial big-Theta expression above:

T (m) ∈ Θ(m2)−Θ(m) + Θ(m)

Clearly T (m) ∈ Θ(m2), and since we have a sequence of m INSERT operations, we have as
our amortized complexity for INSERT to be Θ(m).
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Question 4

a)

The key observation is that path compression will shorten the height of a tree, and thus,
change the structures. So our goal is to find the smallest number of operations that results
in a tree that will makes T1, T2 different after path compression.

Recall that path compression aims to reduce traversal time by replacing the parent pointer
of each node along a path with the representative of the disjoint set. So in that vein, we’d
want to construct a tree with a branch with more than 1 node in the least amount of
operations as possible.

Since T1, T2 both use union by weight, it would be sensible for us to find consider trees of
the same weight since that would cause branches of different lengths. Constructing two
trees each with a weight of 1 doesn’t help us; path compression wouldn’t change the tree
representation. So we consider trees each with a weight of 2.

When we have trees each with a weight of 2, we can union them to obtain a tree with a
representative, a branch with 1 node, and another branch with 2 nodes. It then follows that
if we were to call FIND-SET on the deepest node in the branch with 2 nodes, we would have
differing T1, T2 due to path compression as that node would have its parent replaced with
the representative.

So we will do exactly that. First, we construct 2 trees of weight 2: MAKE-SET(1),
MAKE-SET(2), UNION(1,2) and MAKE-SET(3), MAKE-SET(4), UNION(3,4). Then we union
these two trees: UNION(1,3). And finally, we call FIND-SET(4), which performs the path
compression, replacing the parent pointer of that node with the representative of the
disjoint set, i.e., the node containing 1.

In this process, we performed 8 operations, so we find n = 8, justified by our analysis above.

b)

The key observation is precisely the difference between union by weight and union by rank;
that is, the rank of a disjoint set tree is a monotonically increasing function while the
weight of a disjoint set tree is a strictly increasing function. So to find n, the smallest
number of operations to make T2, T3 differ, we find the smallest sequence of operations
that increase weight but not rank. Also note that we must also change the structure
between the trees, such as the representative.

21



Xiao Owen Hu, Eric Zhu Problem Set 3

Recall that the rank of a tree increases if and only if on a UNION operation, the ranks of the
two trees are exactly the same. So then, since the weight of a tree is strictly increasing as we
add more and more nodes to the tree, we see that our analysis of n is solely dependent on
constructing trees with more than 1 node and same rank then calling the UNION operation
on them, so that we get T2 to have a tree with a larger weight than that of T3’s rank.

We begin with two MAKE-SET calls and one UNION call: MAKE-SET(1), MAKE-SET(2),
UNION(1,2). We see that T2 now has a tree of weight 2 (2 nodes), and T3 has a tree of
rank 1.

Next, to potentially change either the rank of T3’s tree or the weight of T2’s tree, we must
create more nodes and combine these disjoint sets, i.e., more MAKE-SET and UNION calls.

So let us examine what happens with one more MAKE-SET and UNION calls. Suppose we do
MAKE-SET(4), UNION(1,4) in that order. We would see that T2 now has a tree of weight 3
because of the additional node, while T3 still has a tree of rank 1. This follows from our
key observation in that we may have a tree with 2 nodes that has a rank of 1 but also a tree
with 3 nodes that has a rank of 1. However, these two trees would have two different
weights.

At this point we could continually call MAKE-SET and UNION between our tree with 3 nodes
and one new node but that would preserve the same tree structure between T2, T3 because
both the weight and rank of T2, T3 respectively are bigger than those of any single node
(disjoint set). So then, we would need to union our current tree of T2, T3 with a new tree
that has more than 1 node. From the previous paragraph, we noted that while we added an
additional node, our rank didn’t increase for T3 while the weight for T2 did. That means,
we could do two more calls to MAKE-SET and union those two single element disjoint sets to
create a new tree with rank 1 and weight 2, which would allow us to pick a new
representative in T3 (either the representative of the tree with 2 nodes or our current one)
through a union call.

We’ll do exactly that. So suppose we perform 2 more MAKE-SET calls and more UNION call:
MAKE-SET(5), MAKE-SET(6), UNION(5,6). Then we will choose to perform UNION(5, 1).
We do this to choose the representative during the union in T3 to be the representative of
the smaller tree, i.e., the one containing only 5 and 6. We can do this because 5 is the first
argument to the UNION call. Interestingly, this union call doesn’t affect the order in T2
since one of the trees had a weight of 3 and the other tree with 2 nodes only had a weight
of 2. Thus, for T2, the representative after the union call didn’t change, and T2, T3 now
have trees with different representatives.

Counting up our sequence, we find that we performed 9 operations, which we conclude to
be n, i.e., n = 9, justified by our analysis above.
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