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Question 1

(a)
The data structure we use consists of two AVL trees.

We will call the first tree "postID tree”. It is indexed by the postID, i.e., the key for the
tree is postID, so the corresponding field for the key in nodes are called node.key. The
nodes additionally contain values date, views, i.e., node.values. This tree will have an
additional augmentation where for each node, there is an accompanying pointer to
corresponding node in the second tree (introduced next), so that we are able to easily delete
from both trees. This field will be called node.date_ptr.

We will call the second tree "earliest _date tree”. It is indexed by the views, i.e., the
key for the tree is views, so the corresponding field for the key in nodes are called
node.key. The nodes additionally contain values postID, date, i.e., node.values. We
will additionally augment this tree two ways: first, nodes in this tree will contain a pointer
to the node’s parent (the root node’s parent pointer will point to NIL/NULL), i.e.,
node.parent, and second, each node contains the max date in the subtree

(node .max _date), i.e., the maximum date of any of a root’s descendants and its own date.

(b)

Note that the memory address isn’t necessarily a property of the node, depending on the
language. It can just be a passed in value to the memory address that holds the
corresponding node object.
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earliest_date tree

/N

Description of Insert:
Presented a 3-tuple of values for postID, date, views, we will insert at the root of both

AVL trees (postID tree, earliest.date tree), but doing so first with earliest_date
tree. The two new nodes will follow standard binary search tree insert algorithm, i.e.,
TREE-INSERT(T,z) as described on page 294 of the CLRS textbook. Inserting first into

(c)
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earliest _date tree allows us to return the pointer to the newly inserted node. So then
we will augment given tuple postID, date, views with the pointer to the newly inserted
node in earliest date tree, and insert the node with the 4-tuple into postID tree.
After this node is correctly inserted, we finish Insert.

Justification for a running time of O(log(n)):

Recall Insert as defined above, and notice that it is a linear operation, consisting of two
operations: inserting into postID tree and inserting into earliest_date tree. It follows
then that the running time of Insert is just the running time of inserting into postID
tree plus the running time of inserting into earliest_date tree.

Inserting into postID tree runs in O(log(n)) because by construction postID tree is an
AVL tree. As we learned in class, inserting into an AVL tree is O(log(n)) as it is a nearly
complete binary tree. More explicitly, suppose postID tree is of height h € N, and we are
inserting a node that will have a depth of h as a result of inserting, then we know in this
situation that is indicative of the worst case (most tree traversals), the running time of a
tree insertion is O(log(n)) because h is exactly |logn| € O(log(n)). Since an AVL tree is
self-balancing to maintain the |logn| height, it will O(log(n)) rotations that each take
O(1) operations as we showed on page 51 of the week 4 slides. Therefore, putting the time
to insert and rotate together, we get O(log(n)) + O(log(n)) € O(log(n)).

Inserting into earliest_date tree runs in O(log(n)) because by construction
earliest_date tree is an AVL tree. Our analysis for inserting a node into earliest_date
tree follows from the previous paragraph, which led us to conclude O(log(n)) time for
inserting into postID tree. Similarly, inserting a node into earliest date tree will also
take O(log(n)) time. Additionally, performing the necessary tree rotations will also take
O(log(n)) as our analysis is the same as stated for postID tree given that we have an AVL
tree with a height of |logn| (both trees have the same number of elements but a possibly
different ordering). Note that updating the augmentations, i.e., the root’s pointer to the
parent can be easily performed in constant time as we would just need to swap the parents
of the nodes that are getting demoted to a subtree or promoted to the root. Second,
updating the max_date augmentation is also done in constant time because we just need to
compare the old max to the new max, and if there’s a rotation, we’d just need to swap the
max_date properties of the nodes being demoted to a subtree or promoted to the root. So
neither of these augmentations affect the overall runtime. Therefore, putting the time to
insert and rotate together, we get O(log(n)) + O(log(n)) € O(log(n)).

As we see that inserting into postID tree and earliest._date tree both take O(log(n))
time, we have that Insert takes O(log(n)) + O(log(n)) € O(log(n)).

(d)

Description of Delete:
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Note that since our ADT implements with two AVL trees, we must update both AVL trees
by deleting the node with the specified Piazza postID from both trees (and perform the
appropriate tree rotations on both trees). First, we will delete from postID tree using the
standard binary tree delete algorithm as outlined on page 51 of the week 4 annotated slides
with one difference. That difference is: when the desired node is found we additionally
return the corresponding pointer of the deleted node in earliest_date tree, i.e.,
node.date_ptr, which gets passed up the call stack and ultimately returned. Alternatively,
if we try to delete a nonexistent Piazza post, i.e., one that was never inserted, we will
return NIL instead.

Next, we’ll need to delete the corresponding node in earliest _date tree. Since we have a
pointer to the corresponding node in earliest_date tree, we can directly access it and
delete it as specified by the course notes, and performing the corresponding tree rotations
as needed as we go back up to the root (recall that we have augmented earliest date
tree with references to the parent node).

Note that to update the augmentations, we will first update the parent augmentation. We
do so by first swapping the parent pointer from the node we want to delete to the successor
(the node that will be replacing the parent). Second, to update the max date
augmentation, we take the max of the max_date property of the left and right subtrees of
the node we want to delete and set that to the max_date property of the successor (the
node that will be replacing the parent). These augmentations will then maintain their
correct properties regardless of tree rotation as outlined in the Insert analysis.

This completes our Delete algorithm.

Justification for a running time of O(log(n)):

Our algorithm for Delete operates linearly in two parts: deleting from postID tree and
deleting from earliest_date tree. Deleting from postID tree requires finding the
correct node with the postID we want to search for, which is done through binary search.
Since our tree is an AVL tree of height h = |logn|, we have that it is done at worst in
O(log(n)) time (in the case that the postID is not in the tree or at depth of &), and then
our tree rotations are also done at worst in O(log(n)) time. So adding the bounds for the
binary search and rotations, deleting from postID tree takes at worst O(log(n)) time.
Next, deleting from earliest _date tree takes a constant number of operations to perform
the part of deletion as we have the pointer to the node we want to delete, and again tree
rotations take at worst O(log(n)) time. So overall our algorithm takes O(log(n)) time.

(e)

Description of Search:
Since Search is only concerned with finding the Piazza post corresponding to some postID,
the algorithm we use is the binary search tree algorithm as presented in the course, i.e.,
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starting from the root node of postID tree, we examine if the key (postID) we're looking
for is larger than that of the root in which case we perform the same operation on the node
right of the root, otherwise we perform the same operation on the node left of the root. We
do this until going down postID tree until we either find the node with the desired key
(and return node.values) or else we return NIL.

Justification for a running time of O(log(n)):

Since the algorithm only concerns postID tree, we only need to evaluate how long Search
takes on postID tree. Recall that postID tree is an AVL tree, as such it’s height is

h = [logn]. So at most there will be at most h comparisons if the postID we search for is
not in postID tree, i.e., was never inserted. Or if the node we search for is at depth h. It
follows that since h = |logn| € O(log(n)), the running time of Search € O(log(n)).

(f)

Description of MaxViewedAfter:

Since MaxViewedAfter is only concerned with finding the maximum views after a certain
date, we will only consider the earliest_date tree. The argument provided in the
MaxViewedAfter ADT function is just the date that acts as a lower bound. To complete
this, we want to use the max_date property as ”controller” for which subtree to traverse to,
rather than blindly traversing right. Explicitly, we compare the max_date property of the
current node we are on (starting with the root of the earliest date tree) with that of
the right and left subtrees. Then we’ve got a few cases:

1. If the right subtree has a max_date property greater or equal to than that of
earliest_date, the function argument, we traverse right because we know there
exists a node with a views property with a date greater than earliest_date.

2. If the right subtree has a max_date property less than that of earliest_date and so
does the current node’s date property, then we traverse left because we know that
neither the current node nor any nodes in the current node’s right subtree is the node
we are looking for.

3. Finally, if the right subtree has a max_date property less than that of earliest_date
(or is NIL), but the current node’s date date is greater than or equal to
earliest_date, then we just return the node’s views property; we’ve found our node!
Note that we don’t care if the left subtree is NIL or has a max_date property greater
than earliest_date as all nodes in the left subtree have less views than our current
node.

We repeat all the steps above starting from comparing max_date properties of the current
node, right, and left subtrees, and then choose one of the 3 cases above, until we are able to
get to the 3rd case (case that starts with "finally”).

6
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Note that if earliest_date is bigger than earliest_date tree’s max date property, we
will return NIL.

Justification for a running time of O(log(n)):

Our running time for this algorithm is dependent on the number of nodes we traverse. So
it’s important to recall that we have an AVL tree, whose height is h = |logn]| € O(log(n)).
Notice from the algorithm description that the algorithm can only go down a tree, never
up. At each node, only constant time comparisons between itself, its left and right subtrees,
and respective max_date properties are made. Therefore, at most, MaxViewedAfter
examines h nodes, one of each depth. It follows that since at each depth (i.e., node), the
running time is constant, the running time of the algorithm is at most h (the most number
of nodes we can visit), leading us to conclude a running time in O(log(n)).
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Question 2

(a)

The naive algorithm will loop through each element of the input array, and for each loop
iteration, loop through the rest of the input array keeping track of the element with the
highest test count that is lower than the current element’s test count. After each inner
iteration, get the difference between the date of the element with the highest test count and
the date of the current element and assign it to a new output array at the position of the
current element in the input array.

Pseudocode:

I def nearest_test_count (A):
ret_array = [0] * len(A)
for i in range(len(A)-1):
i_max = 0
for j in range(i+1l, len(A)):
6 if A[j].case < A[i].count and A[j].count > A[i_max].count:
7 i_max = j
8 ret_array[i] = A[i_max].date - A[i].date
9 return ret_array

0N

—1
The number of element comparison (line 6) is Y7 k = (n="Dn = 0(n?).

(b)

Data structure:

For the implementation of our algorithm, consider the following data structure.

We have an augmented AVL tree that is sorted by the test count (left subtree contains
lower test count, right subtree contains higher test count) and each node contains the tuple
of date and test count, as in the input array, and two additional fields that store the max
date (date that is the latest) of the subtree rooted at the given node and a reference to its
parent.

We will only be using insert and rotate operations for our algorithm, so we will only be
analyzing the runtime of these two operations.

For search, everything remains the same, we will binary search by the test count and the
worst case runtime is O(log(n)).
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For insert, as we move down the path from root to the insertion point, we will update each
node’s max date to the new node’s date if it is larger than the node’s date. It is a constant
time operation for each node on the path, so the worst case runtime remains ©(log(n)).

For rotate, we simply need to compare the max dates of the two pivot nodes that we are

rotating with. If the max date of the pivot node that is being ”promoted” is earlier than the
max date of the other pivot node that is being ”demoted” (in terms of depth), then update
the former’s max date to the latter’s max date. We will also swap the reference to parent of
both pivot nodes. This is one extra operation per rotation, so rotation stays constant time.

For the example input array, the augmented AVL tree will look like:

(01/01, 3363)
max: 02/09
i=0

(02/04, 1670)
max: 02/09
i=7

(01/07, 4249)
max: 01/16
i=2

(02/01, 1172)
max: 02/09
i=6

(01/02, 2964)
max: 01/15
i=1

(01716, 3422)
max: 01/16
i=5

(02/09, 1072)
max: 02/09
i=8

(01/11, 2903)
max: 01/11
i=3

(01/15, 3056)
max: 01/15
i=4

Algorithm:

For our algorithm, we will first build our augmented AVL tree that we described above.
Since each insert and rebalance operation is in worst case ©(log(n)) time and there are a
total of n elements in the input array, the asymptotic runtime of building this augmented
AVL tree from the input array will be ©(nlog(n)).

Then, we will loop through the input array and get the corresponding output for each
element with the following:

First, find that particular element (we will call the current element) in the augmented AVL
tree - this will take ©(log(n)) time. Then, we will examine the max date of the left child if
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it exists. If the max date is larger than the current element’s date, this means there is an
element in that subtree with a date later than the current element’s date and has a test
count lower than its test count (since it is the left subtree).

In that case, we will traverse through the left subtree and look at the max date values of the
right child, root and the left child (in that order of descending number of test count). If the
right child has a max date value greater than the current element’s date, then we traverse
through the right subtree repeating the process. If not, we will check if the root node’s date
is greater than the current element’s date and if so, the root node is our desired date with
the largest test count on a date later than the current’s. Else, we will check if the left child’s
max date is greater than the current’s and if so, traverse through the left subtree repeating
the process. There will not be a case where none of the left child, root and the right child’s
max dates are greater than the current’s, because we would not have traversed into this
subtree if there didn’t exist a max date greater than the current’s. This will lead us to our
desired node with the largest test count on a date later than the current’s and we will
return the difference between that node’s date and the current element’s date and assign it
to the return array at the same index as that of the current element in the input array.

In the case where there is no left child for the current element or the left child has a max
date less than the current element’s date, we will stop and traverse back up while checking
if there is a left subtree with a max date later than current’s. In other words, we are
checking if there are elements with a lower test count at a later date than current’s date. If
there is no valid left sibling as we go back up to the root, then we will return 0 as we reach
the root. If there is a valid left sibling as we traverse back up, then we will traverse down
the first valid left subtree in the same with as described in the previous paragraph until we
reach the node with the largest test count and later than current element’s date.

This will give us the desired node in the end, and we will calculate the difference between
that node’s date and the current node’s date and assign that value to the return array at
the current index. If no desired node can be found, a zero will be returned and assigned to
the return array at the current index.

After we loop through the entire input array, we will have generated the expected output
array.

Pseudocode:

! def nearest_test_count (A):
ret_array = [0] * len(A)

: # build augmented AVL tree

1 L = AugmentedAVL ()

5 for element in A:

6 L.insert (element)

7 # loop through input array

8 for i in range(len(A)-1):

9 difference = 0

10 current = search(L, A[il])

w N

10
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16

temp = current

# breaks when either:

# - node reaches root

# - left child exists and its max date is later than current’s

# - node’s count is less than current’s and its date is later
than current’s

while (temp != root) and (temp.left is None or temp.left.

max_date < current.date) and (temp.val > current.val or
temp.date < current.date):
temp = temp.parent
# get the difference in date depending on exit condition
if (temp.left and temp.left.max_date > current.date):
# find the right most (largest) node with a date later
# than current’s in the left subtree
temp = temp.left
while temp.left or temp.right:
if temp.right and temp.right.max_date > current.date:
# exists valid node on the right
temp = temp.right
elif temp.val < current.val and temp.date > current.
date:
# no valid node on the right and temp is valid
# so the temp is the largest valid node
break
else:
# valid node is on the 1left
temp = temp.left
difference = current.date - temp.date
elif (temp.val < current.val and temp.date > current.date):
# temp is the desired node
difference = current.date - temp.date
else:
# cannot find desired node
pass
ret_array[i] = difference

return ret_array

The worst-case complexity of our algorithm is ©(nlog(n)).

The algorithm first builds our augmented AVL tree which takes worst-case ©(nlog(n)) time
as explained in the algorithm description.

Then we will have an outer for loop that iterates n times through the input array doing the
following for each iteration.

The search operation takes at most log(n) time if the current node is located at the bottom
of the tree. Then, we traverse back up as the while loop on line 16 checks for the first valid

11
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node where that node is our desired node or its left subtree contains the desired node, and
it will terminate when we reach the root. This means in the worst case, the while loop will
iterate log(n) times until we reach the root. After the while loop, we will check whether we
have to traverse down the left subtree or to stop at the current (temp) node. In the worst
case, we have to traverse down the left subtree of the root to find our desired node which
will take at most another log(n) time. After that, we assign the difference in date to the
return array which is a constant operation. Then, the outer for loop continues.

This means that for each outer for loop’s iteration, there will be at most 3log(n) operations.
Since there is a total of n for loop iterations, the worst-case runtime is

3nlog(n) = ©(nlog(n)). And because building the AVL tree has worst-case ©(nlog(n))
runtime, it does not add any complexity, therefore, the worst-case complexity of the entire
algorithm is ©(nlog(n)).

12
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Question 3

(a)

To implement the ADT operations in worst-case O(log(n)) time, we need to augment the
AVL tree to have an extra field for each node that stores the sum of the engagement scores
of the given subtree rooted at the node.

For the example given (t1 engagement score 50, t2: 67, t3: 80, t4: 40), the augmented AVL
tree will look like:

t3-80
sum =120

(b) Engagement

Given a single time period ¢, we will simply binary search the AVL tree for the time period
since the tree is sorted based on the time period. This has worst-case ©(log(n)) runtime.

(c) AverageEngagement

Given two time periods ¢; and t;, we need to calculate the sum of the engagement scores
between t; and t; inclusive, and then divide by j — ¢ + 1. To calculate the sum between t;
and t;, we will first calculate the sum of engagement scores of time periods before ¢; and the
sum after ¢;.

13
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For the sum before t;, we will start at the root with a running sum that is initialized at the
sum value of the root which is the sum of every period. Then we will binary search for ¢; in
the tree. If the time period of the current node is greater than ¢;, then we will subtract the
sum value of the current node from the running sum and add the sum value of the left
child, traverse to the left child and repeat. If the time period of the current node is less
than t;, then we will simply traverse to the right child. If the time period of the current
node is t;, then we will subtract the sum value of the current node from the running sum,
add the sum value of the left child if exists and return. In the end, the final running sum
will be the sum of engagement scores of time periods before ¢; non-inclusive.

For the sum after t;, we will start at the root with a running sum that is initialized at the
sum value of the root which is the sum of every period. Then we will binary search for ¢; in
the tree. If the time period of the current node is less than ¢;, we will subtract the sum
value of the current node from the running sum, add the sum value of the right child,
traverse to the right subtree and repeat. If the time period of the current node is greater
than t;, then we will simply traverse to the left child. If the time period of the current node
is ¢;, then we will subtract the sum value of the current node from the running sum, add
the sum value of the right child if exists and return. In the end, the final running sum will
be the sum of engagement scores of time periods after ¢; non-inclusive.

After we obtain the two sums, we simply subtract them from the sum value of the root
node and the result will be the sum of engagement scores between ¢; and ¢; inclusive. Then
we divide the value by j — i+ 1 to get the average engagement score.

Pseudocode:

1 def AverageEngagement (L, t_i, t_j):
# get sum before t_i
curr = L.root

w N

sum_before = root.sum
while curr.period != t_i:
if curr.period > t_i: # go left
# subtract current and right subtree’s score sum

© 0 N o o

sum_before = sum_before - curr.sum + curr.left.sum
curr = curr.left

10 else: # go right

11 curr = curr.right

12 left_sum = curr.left.sum if curr.left else O

13 sum_before = sum_before - curr.sum + left_sum

14 # get sum after t_j

15 curr = L.root

16 sum_after = root.sum

17 while curr.period !'= t_j:

18 if curr.period < t_j: # go right

19 # subtract current and left subtree’s score sum

20 sum_after = sum_after - curr.sum + curr.right.sum

21 curr = curr.right

22 else: # go left

23 curr = curr.left

24 right_sum = curr.right.sum if curr.right else O

14
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5 sum_after = sum_after - curr.sum + right_sum

[V I

~

return (L.root.sum - sum_before - sum_after) / (t_j - t_i + 1)

As shown by the pseudocode, we traverse to t; and ¢; to calculate the two sums before
returning the average value. Therefore, it will have a worst-case runtime of

2log(n) = O(log(n)).

(d) Update

Given a valid time period ¢ and a new engagement score e, we will binary search for ¢ in the
augmented AVL tree and replace the old engagement score of t to e. Before we replace the
value, we will also calculate the difference between the new and the old engagement scores
in order to update the sum fields. We will then update all the sum values of the nodes on
the path from the root node to the node with time period ¢t by subtracting the difference of
the new and old engagement scores of t. This will take a worst-case runtime of O(log(n))
since we are at most traversing the height of the tree twice.

(e)

Assume we drop assumption 3, we will need to have an extra field for each tree node that
stores the total number of nodes of the subtree rooted at that particular node. We also have
to change the algorithm for AverageEngagement to calculate the number of nodes before ¢;
and the number of nodes after ¢;, and in the end, we will divide the sum of engagement
scores by the total number of nodes minus the number of nodes before ¢, and after ¢;.

Updated pseudocode:

1 def AverageEngagement (L, t_i, t_j):
2 # get sum and num of nodes before t_i
3 curr = L.root
sum_before = root.sum
5 num_before = root.num
6 # traverse to t_i
7 while curr.period != t_i:
8 if curr.period > t_i: # go left
9 # subtract current and right subtree’s score sum
10 sum_before = sum_before - curr.sum + curr.left.sum
11 # subtract current and right subtree’s number of nodes
12 num_before = num_before - curr.num + curr.left.num
13 curr = curr.left
14 else: # go right
5 curr = curr.right
16 left_sum = curr.left.sum if curr.left else O

15
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sum_before = sum_before - curr.sum + left_sum
left_num = curr.left.num if curr.left else O
num_before = num_before - curr.num + left_num
# get sum and num of nodes after t_j

curr = L.root

sum_after = root.sum

num_after = root.num

while curr.period != t_j:
if curr.period < t_j: # go right
# subtract current and left subtree’s score sum
sum_after = sum_after - curr.sum + curr.right.sum
# subtract current and left subtree’s num of nodes

num_after = num_after - curr.num + curr.right.num
curr = curr.right
else: # go left
curr = curr.left
right_sum = curr.right.sum if curr.right else O
sum_after = sum_after - curr.sum + right_sum
right_num = curr.right.num if curr.right else O
num_after = num_after - curr.num + right_num
return (L.root.sum - sum_before - sum_after) / (L.root.num
num_before - num_after)

16
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Question 4

(a)

We will call our input array A. We will loop over each element in the input array, and we
know that each element will have a country, c, and date, d. This loop is our outer loop. At
the start of each iteration we also hold a tuple, dates: (min date, max date). This tuple’s
values are both initialized to d Then for each iteration, we start at the beginning of A and
loop over the entirety of A again, i.e., we use an inner loop. During each iteration of the
inner loop, if we encounter a element with a country c’, where ¢ = ¢’, then we compare our
values in tuple dates. If this element holds a date, d’ that is either larger or smaller than
either min_date, max_date, we update the appropriate value in the tuple. For example, if
d’ is 2015, and our current min_date in the dates tuple is 2016, we update min_date. At
the end of each iteration of the inner loop we calculate the difference max_date - min_date
and append to a list containing the maximum difference corresponding to each element in
A. Finally, we loop over this array of differences, range _arr, comparing each difference to
a variable that contains the maximum difference. We update the maximum difference as
needed. We also note the index of the max difference to be able to find the country name
in constant time in A. We return the country corresponding to the maximum difference in
range arr.

Pseudocode:

def find_gold_medal_range (A):
max_range = ("", 0)
# note that values have same order as A
range_arr = [0] * len(A)
# non inclusive upper bound - same as python
for i in range(len(A)):
# min/max dates init to date of A[il]
# note that dates are at index O of each element
dates = (A[i]l[0], A[il[01)
for j in range(len(A)):
# if the countries are the same
if A[j1[2] == A[i]l[2]:
# update max date
if A[j1[0] > dates[1]:
dates [1] = A[j]l[o0]
# update min date
else if A[j][0] < dates[0]:
dates [0] = A[j][0]
range_arr[i] = dates[1] - dates[0]
# return the country corresponding to the maximum difference in
range_arr
for i in range(range_arr):
element = range_arr[i]
if element > max_range[1]:
max_range = (A[i][2], element)

17
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return max_range [0]

Both the outer and inner loops run over the entirety of the input array A, so each execute
n = len(A) iterations. The final for loop loops over all of range arr, which is necessarily
n long. The inner loop takes at most 6 constant time operations, so it takes at most 6n
operations for n iterations. The outer loop takes at most 6n operations (the cost of the
inner loop) and 3 other constant time operations per iteration. Thus, we have n(6n + 3)
total operations so far. Then we note that the final for loop over range_arr takes at most 4
constant time operations per iteration for n iterations, i.e., 4n operations total.

In total find gold medal range takes at most (6n? + 3n) + 4n = 6n? + 7n operations.
So we conclude 6n? + 7n € O(n?).

(b)

To reduce our asymptotic expected running time, we will use a hash table as a dictionary,
country_table. It will have exactly n buckets, where n is the length of the input array
A. We use n buckets because there can be at most n unique countries. country_table is
keyed by the country of each element in A, and the corresponding values are a tuples like
so: (min date, max_date), where min date, max_date represents the earliest gold medal
year and the latest gold medal year for a country, respectively. Then, we loop over the input
array A, and insert a key, value pair if the element’s country is not already in country_table,
otherwise, we will compare the element’s date with the tuple of the corresponding country
and update the min date, max_date values if necessary. Finally, the third step is to find the
country with the largest range between their first gold medal and its latest gold medal. To do
this we create a tuple called max_range, containing a string for the country name and a value
for the range. Then, we loop through the hash table, computing the difference max date -
min date for each bucket if the bucket has a value. We will update the max range tuple if
the difference for the element we are on has a greater difference than the range contained in
max_range. By updating max_range, we replace both the country string and the range value.
Since the question is only concerned with finding the country, we only return the string in
the max_range tuple.

Pseudocode:
1 def find_gold_medal_range (A):
2 max_range = ("", 0)
: # implemented using a hash table
4 # a dictionary with len(A) buckets
5 Dictionary country_table = new Dictionary(bucket_count = len(A))
6 for i in range(A):
7 element = A[il]
8 # if the country is not in the dictionary

9 if element [2] not in country_table:

10 # create a entry in the dictionary

18
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11 # key is element[2], the country name
12 # values are (min_date, max_date)

13 country_table[element [2]] = (element[0], element [0])

14 else:

5 # if the country is in the dictiomnary, check if we need to
update

16 # min_date or max_date

17 if country_table[element [2]][0] > element [2]:

18 # update min_date

19 country_table[element [2]][0] = element [2]

20 else if country_table[element [2]][1] < element [2]:

21 # update max_date

22 country_table[element [2]][1] = element [2]

23 # loop over the hash table to find the country we should return
24 for element in country_table:

25 # the dictionary is len(A) buckets long

26 # it’s possible some buckets don’t have values
27 if element is not NIL:
28 # compute difference and check if we need to update

max_range
29 if max_range[1l] < (element.values[l]-element.values[0]):
30 # update the country

31 max_range [0] = element.key
32 # update the range
33 max_range [1] = element.values[1]-element.values [0]

34 return max_range [0]

(c)
This algorithm’s average case running time is O(n).

We note that this algorithm can be broken into 3 parts: dictionary initialization, con-
structing the values for the dictionary, and computing and returning our required value.
Dictionary initialization is a constant time procedure, i.e., we allocate n buckets in mem-
ory. Constructing the values for the dictionary is an O(n) operation because we loop over
the input array A exactly once, and since both dictionary insertion and search is on average
constant time, any operation we perform for each element of A is necessarily performed on av-
erage in constant time. More explicitly, we either insert a tuple if the corresponding country
is not in country_table, or if it already is, we search for the country and potentially update
the value of the entry, which only requires replacing the value of an integer. So it’s clear
that constructing the values for the dictionary is performed on average in constant time per
element for n elements. Finally, recall our 3™ step for computing and returning the country
with the largest difference. Essentially, we loop over our dictionary with n elements once.
Each time we check if that dictionary entry has a larger difference than our current max,
max_range[1], and if so, we update max_range. Then we return the country corresponding
to the maximum difference, i.e., max_range[0]. All of these operations are clearly constant
time, and in fact, by the pseudocode, we have at most 5 constant time operations per itera-
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tion. So 5n € O(n) constant time operations in total. Thus, we have that the overall average
runtime is the sum of the three parts: O(1) +O(n) + O(n) € O(n). We get a better average
case runtime.

20
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Question 5

Let T be an arbitrary hast table where we use the probing function
h(k,i) = [k mod m + ¢i*] mod m.

We want to show that this probe sequence is problematic as it will check at most (m + 1)/2
buckets as ¢ ranges from 0 to m — 1 where m is odd.

Proof:

Let m be an odd positive integer and c, k be arbitrary input value

m—1

WTP: h(k,i) are unique only for i ranging from 0 to and that every h(k,1) for i from

1 -1
mt to m — 1 is a duplicate value that has already been checked for ¢ from 1 to m 5

To prove this, we want to show that:

1 1
vie{l2,.."=}3je {%, o — 1}, h(k, i) = Ak, §)

or equivalently:

-1 1
Vie{l,2,.., mT}’ dj € {%, ...,m—1}, [k mod m+ci?] mod m = [k mod m-+cj*] mod m

Here we will use the definition of congruency cited from David Liu’s Lectures Notes for
CSC165 Page 621 :

Definition 2.4. Let a,b,n € Z, with n # 0. We say that a is congruent to b modulo n
if and only if n|a — b. In that case, we write a = b (mod n).

Applying this definition, we can rewrite our statement to prove as:

-1 1
Vie{l,2,.., mT},Hj € {%, ...,m — 1}, k mod m + ¢i* = k mod m + ¢j*(mod m)

We will now use an extract of the lemma proven in Page 63, Example 2.19 of David Liu’s
Lecture Notes for CSC165:

Example 2.19. For all a,b,c,d,n € Z, with n # 0, if a = ¢ (mod n) and b = d (mod n),
then a +b = c+d (mod n)

'David Liu CSC165 Course Notes: https://www.cs.toronto.edu/~david/course-notes/csc165.pdf
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Since we know that m # 0 and & mod m = k mod m (mod m), if ¢i? = ¢j? (mod m), then
k mod m + ci? = k mod m + ¢j?(mod m).

Therefore, we can rewrite our statement to prove yet again as:

-1 1
Vied{l,2,..., mT},Ej € {%, ym — 1}, ¢i* = ¢j*(mod m)

By expanding the definition of modulo and divisibility, we can finally rewrite it as:

—1 1
Vie{l,2,.., mT},EIj € {%, om—1},3a € Z,cj? — ci* = ma

m—1

Let i€ {1,2,..., T}’ take j =m —i

1
which means j = ﬁ,

m —
Since i is at least 1 which means j = m — 1 and at most 5

J =m — 1 is valid.
Then we take a = c¢(m — 2i)

Since ¢, m, are all integers, a is also a valid integer.

2 2 2

cj? —ci* =c(m—i)* —ci

= c(m? — 2mi + i*) — ci?
= cm? — 2cmi + ci? — ci
= m(cm — 2ci)

= mc(m — 21)

= ma

Therefore, we have proven that every bucket h(k, j) for j from m

to m — 1 has already
m—1
2

been checked by a h(k,i) probe for ¢ from 1 to

Additionally, h(k,0) is always unique since no other value of ¢ will produce ci? = 0 and thus
no other value of ¢ will have ¢i? = 0 (mod m).

m—1

This means the probe sequence h(k, ) are only unique from i = 0 to i = and

1
mt buckets.

therefore it will only check

22



