
Xiao Owen Hu, Eric Zhu Problem Set 1

CSC263 Winter 2021 Problem Set 1

Xiao Owen Hu & Eric Zhu

February 11, 2021

Question 1

Since there can be at most one 21 (no repeats) and that it’s equally likely to be in any of
the n positions or not in the list at all, there are n + 1 equally likely positions for 21.

Therefore, probability p of 21 at any position is 1
n+1

which means it is a uniform
distribution of n + 1 cases.

Calculating the expected runtime where t(k) is the runtime of 21 being in position k:

E[t] =
∑

All cases

Pr(each case) · t(each case)

=
n∑

k=1

Pr(21 at position k) · 2k + Pr(21 not in list) · (2n + 1)

=
n∑

k=1

p · 2k + p · (2n + 1)

= 2p · (n + 1)n

2
+ p · (2n + 1)

= p(n2 + 3n + 1)

=
n2 + 3n + 1

n + 1

= Θ(n)

Since, this is a uniform distribution, Pr(21 at position k) and Pr(21 not in list) are both
p = 1

n+1
. And since we are analyzing the same function as the one from the lecture, the

runtime t(21 at position k) = 2k and t(21 not in list) = 2n + 1 as justified in ”Lecture
Extras: Average-Case Runtime Analysis of hasTwentyOne”.

1



Xiao Owen Hu, Eric Zhu Problem Set 1

Question 2

Best Case:

From looking at code of all groups legal, we see that there is a possible early return at
line 5. So for our best case analysis, we will consider the input family of arrays of
submissions we will call submissions of size n ∈ N, such that the first element in
submissions will cause the program to execute line 5. In other words, the first element in
submissions contains a submission where the two partners are from different sections.
Then, it’s a certainty that all groups legal with only execute 5 constant time operations,
which gives us a best case runtime of Θ(1).

Worst Case:

From looking at code of all groups legal, we see that there is a possible early return at
line 5. So for our worst case analysis, we will consider the input family of arrays of
submissions we will each call submissions of size n ∈ N, such that the first element in
submissions will cause the for loop to complete and exit the program through line 6.
Specifically, our input family consists of arrays that have submissions from partners from
the only same section, which includes students working alone.

We can then be certain with our input family that line 4 will never execute for every
element in submissions. Additionally, we see that in each iteration, we have 4 constant
time operations, leading us to exactly 4n operations using this input family. Since
4n ∈ Θ(n), our worst case runtime is Θ(n).

Average Case:

In the average case, we’ll consider our input family to be the entire universe of possible
inputs, i.e., all submission arrays of length n, where n ∈ N. We find that there can be two
classes of groups: those that conform to the group rules (single partner groups and those
within the same class) which we can call ”good groups” and those that don’t which we can
call ”bad groups”. From there, we can classify our inputs into arrays that only have
submissions with ”good groups” or arrays that have at least one ”bad group”.

We know from our worst case analysis that our worst case running time occurs when we
have all ”good groups”. So when we have submissions of only ”good groups”, we have a
running time of Θ(n) as we concluded in our worst case running time.

From our best case analysis, we were able to derive the Θ(1) running time because we
realized that if there was a ”bad group” at the first index, we could have an early return.
So if there exists a submission belonging to a ”bad group” in our array, we will exit at the
index of that submission. It follows then that we have two cases of submissions: a ”bad
submission”, which is one from a ”bad group”, and a ”good submission”, which is one from

2



Xiao Owen Hu, Eric Zhu Problem Set 1

a ”good group”. It’s logical to denote k ∈ N, the index of the first ”bad submission” our
array of submissions. Note that 0 ≤ k ≤ n− 1. Again assuming that we do have at least
one ”bad submission” in our array, we’ll have to execute the for loop exactly k times. In
this case we won’t execute line 5 until the kth iteration, so for k − 1 iterations of the for
loop we’ll execute lines 1-4, leading us to 4 constant time operations. So there will be
4(k − 1) operations for k − 1 iterations. On our kth iteration, we’ll execute lines 1-5, leading
us to 5 constant time operations. Adding these up, we get 4k − 1 + 5 ⇐⇒ 4k + 1
operations in total.

We’ll introduce discrete random variable T , the running time of our program
all groups legal. T takes the following possible values, i.e., the support of T is defined as:

T =

{
n if there are no ”bad submissions”

4k + 1 otherwise, where k is k as defined above

To find the probability mass function of T , we’ll consider the two distinct cases from our
support of T , i.e., n and 4k + 1. Since the early exit is dependent on the index of the first
”bad submission”, we can define p ∈ R, where 0 ≤ p ≤ 1; and so p is our probability that
we get a ”bad submission”. To make the rest of our analysis flow logically, we can consider
the case where T = n.

In the case that T = n, it is necessarily true that we have no ”bad submissions”, i.e., for
each of our n elements in our array, we do not execute line 5. So we have a probability of
1− p. Since there are n independent elements in our array, we have a total probability of
(1− p)(1− p)(1− p)...(1− p)︸ ︷︷ ︸

(1− p) multiplied n times

= (1− p)n.

Next, considering 4k + 1, we’ll take inspiration from the case that T = n. Suppose our first
”bad submission” comes at index k− 1, our last element in our array. In this case we’d have
a probability of (1− p)(1− p)(1− p)...(p)︸ ︷︷ ︸

n elements

= (1− p)n−1p. Let’s do this a couple more times:

1. In the case that our first ”bad submission” comes in our second to last element, we’d
get a probability of (1− p)(1− p)(1− p)...(p)︸ ︷︷ ︸

n− 1 elements

= (1− p)n−2p.

2. In the case that our first ”bad submission” comes in our third to last element, we’d
get a probability of (1− p)(1− p)(1− p)...(p)︸ ︷︷ ︸

n− 2 elements

= (1− p)n−3p.

Notice how our exponents above our (1− p) term is exactly k− 1; this is because if our first
”bad submission” is at k, we must have k − 1 ”good submissions” first. Since we have

3



Xiao Owen Hu, Eric Zhu Problem Set 1

exactly n elements, we could’ve done this for all n elements, but it’d be smarter to generate
a summation in terms of k:

n∑
k=1

(1− p)k−1p

So we’ve now created our probability mass function, and all that’s left is to find the
expected value:

E[T ] = (
n∑

k=1

Pr(first ”bad submission” at k) · T (first ”bad submission” at k))

+ Pr(no ”bad submission”) · T (no ”bad submissions”)

= (
n∑

k=1

(1− p)k−1p · (4k + 1)) + (1− p)n · n

= (
n∑

k=1

(1− p)k−1p · 4k) + (
n∑

k=1

(1− p)k−1p · 1) + (1− p)n · n

= (
4p

1− p
)

n∑
k=1

k(1− p)k +
p

1− p

n∑
k=1

(1− p)k + (1− p)n · n

= (
4p

1− p
)(

(1− p)n+1(n((1− p)− 1)− 1) + (1− p)

(1− (1− p))2
+

p

1− p

n∑
k=1

(1− p)k + (1− p)n · n

= (
4p

1− p
)(

(1− p)n+1(n((1− p)− 1)− 1) + (1− p)

(1− (1− p))2
+

p

1− p

(1− p)n+1 − 1

(1− p)− 1
+ (1− p)n · n

= (
4p

1− p
)(

(1− p)n+1(n((1− p)− 1)− 1) + (1− p)

(1− (1− p))2
− p

1− p

(1− p)n+1 − 1

p
+ (1− p)n · n

= (
4p

1− p
)(

(1− p)n+1(n(−p)− 1) + (1− p)

(1− (1− p))2
− p

1− p

(1− p)n+1 − 1

p
+ (1− p)n · n

Since our expression above is in terms of p, we need to define p in order to obtain a sensible
Θ bound for our expected runtime. The first key thing to note is that we’re provided
section sizes, and the probability of working alone. As such, our probability p is the
probability of a ”bad group” as a ”bad submission” has an equivalent probability as these
events are equivalent. So then, our probability of a ”bad group” first entails a group, i.e.,
0.8 chance, and then that group being bad. In more mathematical terms, we’ll want to
multiply our chance of having a group by the proportion of ”bad groups”.

Since we have a total of 700 students, we have a total of
(
700
2

)
= 244650 combinations of

4



Xiao Owen Hu, Eric Zhu Problem Set 1

groups. Out of these combinations of groups, we have 163200 bad groups, which we can
calculate by computing 244650− 2·

(
240
2

)
−
(
220
2

)
, assuming that students are no more likely

to choose partners across all sections. In other words, we subtract the number of ”good
groups” from each class by the total number of two person groups across all 3 sections. So
our proportion bad groups is therefore (163200/244650 = 0.667075), which gives us a
probability of p = 0.8 · 0.667075 = 0.53366.

Let’s also consider the more realistic scenario, where students are much more likely to pair
with students within their own class, e.g., students are likely to coordinate which sections
and classes to take and students are more likely to get to know students within their
section. So then, it follows that the amount of ”bad groups” we got in our first scenario
would be less, but we don’t have much information on how to specify that by the
assignment handout. A reasonable guess would be that half the number of ”bad groups”
would now be good groups (81600 vs 163200), which gives us that the proportion of ”bad
groups” is now 81600

244650
= 0.33538, which seems to be reasonable. So our two values for p

come out to be 0.53366, 0.33538.

We’ll now use our two values of p (0.53366 and 0.333538) in order to find a concise Θ bound
for the runtime of the program. Recall our expression for the expected value of the runtime:

E[T ] = (
4p

1− p
)(

(1− p)n+1(n(−p)− 1) + (1− p)

(1− (1− p))2
− p

1− p

(1− p)n+1 − 1

p
+ (1− p)n · n

First, when p = 0.53366, we find our expression for the expected value of the runtime is:

E[T ]p=0.53366 = (
4p

1− p
)(

(1− p)n+1(n(1− p)− 1)− 1) + (1− p)

(1− (1− p))2
− p

1− p

(1− p)n+1 − 1

p
+ (1− p)n · n

= (
4 · 0.53366

1− 0.53366
)(

(1− 0.53366)n+1(n((1− 0.53366)− 1)− 1) + (1− 0.53366)

(1− (1− 0.53366))2

− 0.53366

1− 0.53366

(1− 0.53366)n+1 − 1

0.53366
+ (1− 0.53366)n · n

= (n + 7.49541(n(−0.53366)− 1.13342)) · (0.46634)n + 9.63977

Taking the expression (n + 7.49541(n(−0.53366)− 1.13342)) · (0.46634)n + 9.63977, we’ll
realize that after dropping the constant terms (in order to get a Θ expression), we have
(−3n− 8.49545) · (0.46634)n, which we notice that as n→∞, the expression goes to 0 since
0.46634 < 1. So similar to the hasTwentyOne example from class, we conclude that
asymptotically, as n→∞, our average case runtime approaches 9.63977.

5



Xiao Owen Hu, Eric Zhu Problem Set 1

Second, when p = 0.333538, we find our expression for the expected value of the runtime is:

E[T ]p=0.333538 = (
4p

1− p
)(

(1− p)n+1(n(1− p)− 1)− 1) + (1− p)

(1− (1− p))2
− p

1− p

(1− p)n+1 − 1

p
+ (1− p)n · n

= (
4 · 0.333538

1− 0.333538
)(

(1− 0.333538)n+1(n((1− 0.333538)− 1)− 1) + (1− 0.333538)

(1− (1− 0.333538))2

− 0.333538

1− 0.333538

(1− 0.333538)n+1 − 1

0.333538
+ (1− 0.333538)n · n

= (n + 11.9926(n(−0.333538)− 1.08338)) · (0.666462)n + 13.4931

Taking the expression (n + 11.9926(n(−0.333538)− 1.08338)) · (0.666462)n + 13.4931, we’ll
realize that after dropping the constant terms (in order to get a Θ expression), we have
(−3n− 12.9925) · (0.666462)n, which we notice that as n→∞, the expression goes to 0
since 0.666462 < 1. So similar to the hasTwentyOne example from class, we conclude that
asymptotically, as n→∞, our average case runtime approaches 13.4931.

6



Xiao Owen Hu, Eric Zhu Problem Set 1

Question 3

(a)

For this algorithm, we will essentially use the merge function of a merge sort (as we have
learned in CSC148). We first create an array of size n to store the merged array. We keep
two pointers for the two arrays, one pointer for the merged array and start at the 0th index.
Then, we compare the values of the two elements at the pointers, assign the larger of the
two elements to the merged array at the pointer and increment the pointer to the larger
element and the pointer to the merged array. We repeat this process until one of the two
pointers reaches the end of their respective length, at which point we check if the pointer to
the other array has reached the end - if not, we push the rest of the elements of that array
onto the merged array by incrementing the merged array’s pointer and assigning each value
to the pointer location.

(b)

1 def merge_sorted_arrays(Array arrayA[a], Array arrayB[b]):

2 i = 0 # pointer for arrayA

3 j = 0 # pointer for arrayB

4 k = 0 # pointer for merged

5 Array merged[a+b]

6 while i < a and j < b:

7 if arrayA[i] > arrayB[j]:

8 merged[k] = arrayA[i]

9 i++

10 else:

11 merged[k] = arrayB[j]

12 j++

13 k++

14 if i < a:

15 for h = i to a-1:

16 merged[k] = arrayA[h]

17 k++

18 else:

19 for h = j to b-1:

20 merged[k] = arrayB[h]

21 k++

(c)

WTP: Worst-case runtime of merge_sorted_arrays is O(n) element comparisons.

7



Xiao Owen Hu, Eric Zhu Problem Set 1

The function merge_sorted_arrays has inputs arrayA and arrayB of lengths a and b
respectively and that the input size n = a + b. Assume arrayA and arrayB are sorted in
decreasing order and contain no duplicates. Inside the function, the only element
comparison is on line 7 inside the while loop.

Line 5 contains the while loop condition that terminates the loop when i >= len(arrayA) or
j >= len(arrayB). Since either i or j will increment inside the while loop, in the worst case,
both arrays have the same length and i and j are both incremented to i = a− 1 and
j = b− 1 before terminating after the next increment/iteration. In that case, the loop will
iterate for a total of a + b− 1 or n− 1 times. Since each iteration has one element
comparison, there will be a total of n− 1 element comparisons.

After the while loop, there is no more element comparisons, therefore the total number of
element comparisons is n− 1 = O(n).

(d)

The best-case running time of the merge algorithm would be min(a, b) element comparisons
where min(a, b) stands for the smaller number of a and b or a if a = b.

Let a, b be arbitrary large integers, want to describe an input family of array A and array B
of lengths a and b respectively.

If a > b, let array A contain the values [a, a− 1, a− 2, ..., 1] and array B contain the values
[a + b, a + b− 1, ..., a + 1]. Since every element of array B is larger than the first element of
array A which is a, the entire array B will be iterated while the pointer for array A stays at
index 0 and the while loop will terminate after b iterations when j = b. So the total number
of element comparison is min(a, b) = b.

If a ≤ b, let array B contain the values [b, b− 1, b− 2, ..., 1] and array A contain the values
[b + a, b + a− 1, ..., b + 1]. Since every element of array A is larger than the first element of
array B which is b, the entire array A will be iterated while the pointer for array B stays at
index 0 and the while loop will terminate after a iterations when i = a. So the total number
of element comparison is also min(a, b) = a.

No other input could require fewer comparisons because the while loop will only terminate
after the pointer i = a or the pointer j = b, and since i and j start at 0 and increment once
every iteration, there will be at least min(a, b) loop iterations and consequently at least
min(a, b) element comparisons.

8



Xiao Owen Hu, Eric Zhu Problem Set 1

(e)

Let X be the resulting sorted array of the algorithm and assume that every input
combination of A and B that could have led to creating X is equally likely.

To calculate the expected runtime, we divide the cases according to the loop exit states.
First, we divide them into those that exit the loop on i = a and those that exit on j = b:

E[t] =
∑

All cases

Pr(each case) · t(each case)

=
∑

exits on i=a

Pr(each case) · t(each case)

+
∑

exits on j=b

Pr(each case) · t(each case)

Then, for those exiting on i = a, the cases can be divided into the possible values of j on
exit. Since all input combinations are equally likely, we will use p for uniform probability
for now and the runtime equals the number of while loop iterations which is a + j, since i
and j are only incremented once each iteration.

∑
exits on i=a

Pr(case) · t(case) =
b−1∑
j=0

Pr(case) · t(case)

=
b−1∑
j=0

p(a + j) =
b−1∑
j=0

pa +
b−1∑
j=0

pj

= pab + p
b−1∑
j=0

j

= p(ab +
(b− 1)b

2
)

Similarly, for those exiting on j = b, the cases can be divided into the possible values of i on
exit:

∑
exits on j=b

Pr(case) · t(case) =
a−1∑
i=0

Pr(case) · t(case)

=
a−1∑
i=0

p(b + i) =
a−1∑
i=0

pb +
a−1∑
i=0

pi

= pab + p
a−1∑
i=0

i

= p(ab +
(a− 1)a

2
)

9



Xiao Owen Hu, Eric Zhu Problem Set 1

Now, going back to the original calculation of E[t] and adding the two together we get:

E[t] = p(ab +
(b− 1)b

2
) + p(ab +

(a− 1)a

2
)

= p(2ab +
(b− 1)b

2
+

(a− 1)a

2
)

=
p(4ab + b2 − b + a2 − a)

2

=
p[(a + b)2 − (a + b) + 2ab]

2

=
p(n2 − n + 2ab)

2

Since all cases that result in the sorted array X are equally likely to occur and that there
are b number of cases for loop exiting on i = a, a number of cases for loop exiting on j = b,
and two cases that do not enter the loop where either A or B are empty, there are a total

a + b + 2 = n + 2 number of equally likely cases. Therefore, p =
1

n + 2
and the expected

value or the average case runtime E[t] =
n2 − n + 2ab

2(n + 2)
= Θ(n)

(f)

In this algorithm, we will first create an array of size k to store a max heap of at most k
nodes. Then, we will insert the first element of all k sorted arrays onto the max heap (line
7). We will also create an array of size n to store the return array and a temporary array of
size n− k to store all the un-inserted elements (line 8-9). We will also create two pointers
for the return array and the temporary array.

Then, we will do extract_max on the max heap, assign the max number to the pointer
location of the return array and increment the pointer. After each extract_max, we will also
insert another element of the input arrays onto the heap. Since there are n− k total
elements that needed to be inserted, we will iterate through the n− k elements of the
temporary array (line 11) while extracting max, assigning them to the pointer location of
the return array (line 12) while incrementing the pointer each time and inserting the rest of
the elements onto the max heap (line 13).

After n− k iterations, we will repeatedly do extract_max on the rest of the k elements of the
max heap and assigning them to the pointer location of the return array (line 15-16) while
incrementing the pointer each time.

Pseudo-code:

1 def merged_k_arrays(array1 , array2 , ..., arrayk):

2 MaxHeap mheap[k]

10



Xiao Owen Hu, Eric Zhu Problem Set 1

3 Array ret_arr[n]

4 Array temp_arr[n-k]

5

6 ret_arr_pointer = 0

7 temp_arr_pointer = 0

8

9 for arr in [array1 , array2 , ..., arrayk ]:

10 mheap.insert(arr [0])

11 for i = 1 to len(arr):

12 temp_arr[temp_arr_pointer] = arr[i]

13 temp_arr_pointer ++

14

15 for element in temp_arr:

16 ret_arr[ret_arr_pointer] = mheap.extract_max ()

17 ret_arr_pointer ++

18 mheap.insert(element)

19

20 for i = 0 to k:

21 ret_arr[ret_arr_pointer] = mheap.extract_max ()

22 ret_arr_pointer ++

23

24 return ret_arr

Since each input array is sorted in descending order, the initial max heap and the max heap
after each insertion of array element contains the largest number of every input array that
has not been pushed onto the return array. In other words, every time before we extract
max, the max number of the heap will always be larger than every element that has not
been on the heap.

Therefore when performing an extract_max, the max number is always the largest number of
the entire input minus the previous max numbers that have been pushed onto the return
array. So after we have extracted max n− k times and inserted the rest of the n− k
elements onto the heap, the return array contains the n− k largest numbers in descending
order. Then, after we repeatedly extract max of the remaining heap and push onto the
return array, we will have a sorted array of the entire input.

Worst-case runtime:

The heap insert on line 7 contains the first element comparison. It will take
∑k

i=1 log(i)
element comparisons in the worst case. To simplify the calculation, we will use a worse
runtime

∑k
i=1 log(k) = klog(k).

Line 11-13 contains a for loop that iterates n− k times and performs a heap extract_max

and insert. Since we know that both extract_max and insert take Θ(log(k)) operations
where k is the number of nodes on the heap, the worst-case runtime of each loop iteration is
2log(k). So the worst-case runtime of the entire for loop is 2(n− k)log(k).

Line 15-16 contains a for loop that iterates k times and performs a single extract_max each

11



Xiao Owen Hu, Eric Zhu Problem Set 1

iteration. As above, this mean that the worst-case runtime of the entire for loop is klog(k).

Therefore, in total, the worst-case runtime of the function is:

klog(k) + 2(n− k)log(k) + klog(k) = 2nlog(k) = Θ(nlog(k))

12



Xiao Owen Hu, Eric Zhu Problem Set 1

Question 4

(a)

1 def efficient_insertion_point(Node v , Node w):

2 if v.parent is None: # only root

3 v.left = w

4 elif v.parent.right is None: # empty sibling

5 v.parent.right = w

6 else:

7 # v.parent is none iff heap is complete bt

8 # else we have a v being part of some complete bt subtree

9 while v.parent is not None and v.parent.right is v:

10 v = v.parent

11 if v.parent is not None: # second case , i.e., v is part of

some complete bt

12 v = v.parent.right

13 # go down hugging left side

14 while v.left is not None:

15 v = v.left

16 v.left = w

17 return

(b)

Our best case running time will be Θ(1).

Consider an input of size k where k is an arbitrary large number, we’ll define input family
Ik, an input family of heaps represented by binary trees with k elements where k is an even
number. If k is an even number, then the number of elements excluding the root k− 1 is an
odd number. Since every full depth has an even number of elements, this means that there
is an odd number of nodes at depth h where h = blog(k)c, in other words the last ”layer” of
the heap represented by a binary tree.

If the last depth has an odd number of elements, that means the last node is a left child
and does not have a sibling. So the algorithm will step into line 4 and exit. That is a total
of one operation which means the best case running time is Θ(1).

No other input family of arbitrary large size k has a better runtime, because if k is an
odd number, then the last depth will have an even number of nodes following the same logic
above. This means that the last node will be the right child so it will step into the else block
on line 6 and it will iterate through the while loops depending on the input size k. More
precisely, the number of iterations will depend on the number of depths traversed which will
be in terms of log(k). Therefore, the running time will no longer be constant.

13



Xiao Owen Hu, Eric Zhu Problem Set 1

We conclude that the best case runtime is Θ(1).

(c)

Our worst case running time will be Θ(logn).

Examining our program efficient insertion point, we see that the only parts of the
program that are dependent on the size of the heap, n, are the two while loops on lines 9
and 14, which implies that in our worst case, we must get these two loops to run to examine
a runtime that is dependent on heap size, i.e., not constant time.

Note that we are not considering the trivial cases of n here (such as 1 or 0), as we wish
to find an asymptotic bound for the worst case running time.

To get these two loops to execute, let’s define input family In, where n ∈ N, that is
comprised of heaps of height h, where there are an even number of nodes at depth h. Note:
v starts out at depth h by construction of a heap, and using the nearly complete binary tree
property of a heap, we have that h = blognc. Further, v will be the right child of some node
at depth h− 1 = blognc − 1.

Since v is the right child of some node at depth h− 1, w cannot be v’s sibling. Thus, we
have to enter the else branch on line 6. Next, we’ll have to enter the while loop on line 9
because we consider n to be large and since v is at depth h, v will have a non None parent,
and since v is defined to be the right child of its parent, we have that v.parent.right is v.

Examining how many iterations the while loop on line 9 takes, we first note that the only
operation in the while loop is v = v.parent and so v moves over at most 2d nodes for some
depth d by getting reassigned to its parent, so given our heap of even size n, we would take
Θ(logn) time to traverse the heap using our while loop. This is also just a property of a heap
which is a nearly complete binary tree, i.e., h = blognc, meaning there are h ”layers” and
if we traverse one node at each ”layer” we will have a runtime of Θ(logn) due to Θ(logn)
iterations with constant time operations at each ”layer”, which is exactly what our while
loops do.

We can be more precise using a constant, c, of the height of the heap and a constant,
k, the count of iterations of the while loop (the number of reassignments to v), i.e., ∃c, k ∈
N, c · blognc = k. Solving for c, we get c = k

blognc , and more succinctly expressed, c is the
fraction of the height of our heap that v travels for some k iterations of the while loop.
Alternatively, k can also be considered the change in depth v gets as a result of the while
loop. After k iterations of the while loop we’ll end up on line 11, which considers the case
that the heap is a complete binary tree, i.e., we will enter the if statement on line 11 if the
heap is not a complete binary tree because v.parent isn’t None. In either case, v must travel
down to a leaf node due to the while loop’s condition on line 14. We know that in both

14



Xiao Owen Hu, Eric Zhu Problem Set 1

cases, the while loop will execute because we are not at a leaf node given that v is now at a
depth of h − k, so v.left isn’t None. Consequently, to travel down to a leaf node, we must
travel k depths again and always going down the left branch, i.e., k iterations of the while
loop on line 14. Note that in the case the heap isn’t a complete binary tree, we will actually
need to just travel k − 1 depths to reach a leaf node due to line 12. Recall that we express
k as k = c · blognc, i.e., a constant fraction of the height, which is the exact same expression
as the first while loop. This expression also holds for the case that we have k − 1 depths to
travel to get to a leaf. So both while loops can therefore by the definition of big Θ, get a
runtime of c blognc ∈ Θ(logn).

Then we note that we’ve are able to add the big Θ bounds for the while loop runtimes
together, i.e., Θ(logn) + Θ(logn) ∈ Θ(logn). We also will have the other constant time
operations (as we’ve accounted for all the heap size dependent operations of our program).
Since they will add up to some constant C ∈ N, they’ll have a runtime of C ∈ Θ(1). Adding
that to our runtime for our two loops, we get Θ(logn) + Θ(1) ∈ Θ(logn), our program’s
runtime.

Finally, no other input family is able to generate a runtime worse than our input family
In because as stated in the beginning of this analysis, the only heap size dependent (non
constant time) part of the program are the two sequential while loops. These while loops,
as analysed above, each have a runtime of at worst Θ(logn) in the case that we traverse the
entire height of the heap in each while loop, i.e., the most iterations of the while loop. So
as a theta bound for the runtime, we’d have 2Θ(logn) + C ∈ Θ(logn), where C ∈ N, like
above, are the count of constant time operations in the program (also the runtime as they
are constant time). Since the runtime for all heaps in In is in Θ(logn), we have that no other
input family can be worse than In.

15



Xiao Owen Hu, Eric Zhu Problem Set 1

Question 5

(1)

Original max heap:

Intermediate heap, after ExtractMax:

(2)

Original max heap:

16



Xiao Owen Hu, Eric Zhu Problem Set 1

Intermediate heap, after ExtractMax:

Final heap, after insert:

17



Xiao Owen Hu, Eric Zhu Problem Set 1

(3)

For an arbitrary heap H with no duplicates, we define our definition of it being a DIS max
heap as:

P (H) : MaxHeap(H) ∧ (∀n ∈ {N1, N2, ..., Nh}, (n has a sibling) =⇒ (n > n’s sibling))

where MaxHeap(H) means that H is a max heap and N1, N2, ..., Nh are nodes on the path
from the root to the last node, excluding the root node and including the last node.

In other words:

H must be a max heap, and for all nodes on the path from the root to the last node,
excluding the root node, N1, N2, ..., Nh where the subscript stands for their depths and Nh

is the last node, if they have a sibling node, they have to be greater than their sibling.

(4)

For an arbitrary max heap HM with no duplicates, define:

IsDIS(HM) : HM is a DIS max heap.

We want to prove that our description from (3) describes all DIS max heaps and does not
hold for max heaps that are not DIS, in other words:

WTP: ∀HM , P (HM) ⇐⇒ IsDIS(HM)

18



Xiao Owen Hu, Eric Zhu Problem Set 1

Pf:

Let HM be an arbitrary max heap with no duplicates.

Proving P (HM) =⇒ IsDIS(HM):

Assume P (HM) stands.

If the height of HM is 0, it will only have the root node, so extracting max and re-inserting
will preserve the max heap. If the height of HM is greater than 0, consider the following.

We’ll refer to the nodes on the path from the root to the last node as N0, N1, N2, ..., Nh

where h is the height of the tree, and Ni is the node on the path at depth i. So N0 is the
root node and Nh is the last node.

We’ll also call the nodes that are the siblings of the above nodes n1, n2, ..., nh where ni is
the sibling of Ni. n0 does not exist since N0 is the root and nh might not exist depending
on the position of Nh. This means Ni+1 is the parent of Ni and ni.

When we perform an ExtractMax, the root node will first be replaced by the value of the
last node Nh and the last node will be removed. Since we know that P (HM) stands, when
we bubble down Nh from the root, it will follow the path from the root to the position of
the last node.

This is because when we bubble down the path N1, N2, ..., Nh, we will swap with the larger
of the two children as there are no duplicates. Since each node Ni on the path is larger than
its sibling ni, Nh will keep swapping with the values of Ni and so the bubbling down will
follow that path down to the previous location of Nh−1. Then, N1, N2, ..., Nh−1 will all have
been shifted up to the previous locations of N0, N1, N2, ..., Nh−2. And if the heap has height
1, there is no path to bubble down along, so Nh will simply stay at the root before the next
step.

If Nh was previously a left child, then Nh−1 will no longer have any children, and if Nh was
previously a right child, then Nh will be greater than nh because of P (HM). Therefore, in
both cases, after bubbling down and shifting the parent nodes up, Nh will stay at the
previous location of Nh−1.

Then, when we insert the previous max back to the heap, it will first be inserted at the
previous location of Nh and then bubbled up. This means that regardless of whether Nh

was a left or right child, it will return to its original location after it swaps with the
previous max.

Previous max is still the largest number of the heap since no other number was inserted, so
it will bubble back up to the top along the path from the root to the previous last node (as
that is where the previous max was inserted at). Since the nodes on the path

19



Xiao Owen Hu, Eric Zhu Problem Set 1

N1, N2, ..., Nh−1 was shifted up to the previous locations of N0, N1, N2, ..., Nh−2 when we
extracted max, they will now be shifted back down along the same path back to their
original position when we bubble up the previous max.

Therefore, H0 will return to the root node, N1, N2, ..., Nh−1 returned to their original
positions, and Nh also returned to its original location, therefore HM is preserved and
IsDIS(HM).

Proving IsDIS(HM) =⇒ P (HM):

We will prove its contrapositive ¬P (HM) =⇒ ¬IsDIS(HM).

We’ll refer to the nodes on the path from the root to the last node as N0, N1, N2, ..., Nh

where h is the height of the tree, and Ni is the node on the path at depth i. So N0 is the
root node and Nh is the last node.

We’ll also call the nodes that are the siblings of the above nodes n1, n2, ..., nh where ni is
the sibling of Ni. n0 does not exist since N0 is the root and nh might not exist depending
on the position of Nh. This means Ni+1 is the parent of Ni and ni.

Assume ¬P (HM), that means along the path from the root to the last node N1, N2, ..., Nh,
there is at least one node such that its value is less than its sibling. Let Nx be that node.

We want to prove that this HM is not a DIS max heap. To do this, we will trace the
ExtractMax and Insert operations.

When we call ExtractMax, the last node will be removed and Nh will temporarily replace
the root node, then it will be bubbled down. When it bubbles down, it will swap with the
larger node of the two children. Therefore, it will follow the path of N1, N2, ..., Nh until it
reaches Nx. Since Nx < nx, instead of swapping with Nx, Nh will swap with nx and so Nh

will no longer stay on the same path and stay at the previous location of nx or bubble
further down the subtree of nx if applicable. This means that the old values of
N1, N2, ..., Nx−1 will occupy N0, N1, N2, ..., Nx−2 respectively, while the previous value of nx

will occupy Nx−1 and Nx, Nx+1, ..., Nh−1 will stay at the same locations.

Then, when we insert the previous max N0 back into the heap, it will be temporarily placed
at the previous location of Nh and start to bubble up. Since N0 is still the largest number
of the heap, it will be bubbled all the way up along the same path. This means that
Nx, Nx+1, ..., Nh−1 will now occupy Nx+1, Nx+2, ..., Nh respectively while the old values of
N1, N2, ..., Nx−1 will return to their original positions and nx will now occupy the original
location of Nx.

Therefore, the nodes Nx, Nx+1, ..., Nh−1 will now be in different locations as where they
started, Nh will be at the previous location of nx of lower down its subtree, and nx will be
at the previous position of Nx.

20



Xiao Owen Hu, Eric Zhu Problem Set 1

In the case that Nx is the last node Nh, then the nodes Nx, ..., Nh−1 that would have
changed positions will no longer be applicable but Nx will still have swapped positions with
nx, so the heap will still be different. (as illustrated in 5.2)

Therefore, if P (HM) does not hold, then HM is not a DIS max heap.

Since we have showed that P (HM) =⇒ IsDIS(HM) and IsDIS(HM) =⇒ P (HM), we
have proved P (HM) ⇐⇒ IsDIS(HM).

�

21


