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Eric Zhu QUICK INTRODUCTION

Quick Introduction
To keep in mind:

Our STD is Chlamydia, which starts out as an EB, and turns into an RB. We need a lot of it to measure the
effects, so the units are 104 = 10000 EBs. For example C(t) = 1⇒ 104 EBs at time t.

Data was collected in two waves:

1. Female Guinea pigs were infected with known number of EBs (the original form of the STD).
2. Male Guinea pigs were infected with STD to see how disease spreads due to intercourse.

Number of EBs are an average across Guinea pigs with the same dose of EBs.

Head of our data from wave 1:

t C dose number
3 0.000 10ˆ1 2
6 46.829 10ˆ1 2
9 9.106 10ˆ1 2
12 18.862 10ˆ1 2
15 25.366 10ˆ1 2
18 21.463 10ˆ1 2

Head of data from wave 2:

t C dose number
3 35.122 sexual 11
6 11.057 sexual 11
9 11.707 sexual 11
12 0.650 sexual 11
15 0.000 sexual 11
18 0.000 sexual 11

We will use an ODE model to model the count of Chlamydia EBs. We will use the following 3 differential
equations:


∂E
∂t = Pe − δEE(t)− k1C(t)E(t)
∂C
∂t = Pk2I(t)− µC(t)− k1C(t)E(t)
∂I
∂t = k1C(t)E(t)− γI(t)− k2I(t)

A note about e

Finally, it is also worth nothing that e will mostly be referred to as scientific notation, i.e., e2 = 100 and
e− 2 = 0.01. The exponent base e will be explicitly referred to as exp.
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Eric Zhu TASK 1: EXPLORING THE MODEL AND SETTING PRIORS

Task 1: Exploring the model and setting priors
Suppose yi is the cell count of Chlamydia EBs at time i for a particular Guinea Pig, where yi ∼ N(µ, σ) by
the CLT. We have that µ is the solution to our set of differential equations for the rates of change over time
in healthy cells, Chlamydia EBs, and infected cells.

We also know some key pieces of information, namely:

1. Chlamydia EBs should be mostly cleared by t = 30, i.e., C(t) < 0.1, t ≥ 30.
2. Distribution of maximum values of C(t) should cover the valueM,M ∈ (100, 250) when C(0) ∈ (0.001, 1)

.
3. The lysis event produces hundreds of cells, i.e., k2I(t) ≥ 100 · 10−4.
4. If C(0) = 0.1 then the parameters P = 1000, k1 = 0.1/1e − 4, k2 = 0.8, P e = 40 · 1e − 4, δE = 2, γ =

1.2, µ = 1.2 produce a range of approximately [0.1,177] for C(t), which consistent with bullet point 2
above.

5. We take E(0) = 9600× 10−4 and I(0) = 0.

Since we have that PE , δE are both fixed to 40 × 10−4, 2 respectively, we need to place priors on only
P, k1, k2, γ, µ. Note that the prior on µ is not the same µ as the location parameter for our yi. We will also
need a prior on σ, which is to account for the variance of yi.

These priors will also be normally distributed due to the CLT.

We begin by considering bullet point 4 from our key info to give us a nice starting point for centering our
parameters. Also note that it’s not sensible for us to have negative counts of cells.

From bullet point 2, we know that C(0) should range on the interval [0.001, 1]. As such, we can take 0.001 to
be a sort of lower bound and 1 to be a sort of upper bound. It makes sense that for a fixed set of parameters
(and time scale), we could expect to see a higher peak value given a higher initial dose. We can begin with
considering what would happen at C(0) = 0.001. We will use Stan and start with the parameters from
bullet point 4. The goal of this step is to figure out which combination of parameters nearly violate our key
information.

Note that this should be deterministic, i.e., we make no probabilistic statements here.

Here’s the resulting time course plot:
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So clearly, we get that the values for C(t) are well within our stated counts for EBs. But, it doesn’t quite
model the situation correctly, since we still have C(t) values around 1 at day 30. So we need to find some
parameter values such that the infection is about clear around day 30. Additionally, we want to keep in mind
that over various C(0) values from [0.001, 1], we get maximum values easily range over [100, 250]. So ideally,
we get two sets of parameters that where one has a peak somewhat under 100 and one has a peak somewhat
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Eric Zhu TASK 1: EXPLORING THE MODEL AND SETTING PRIORS

over 250 because these will be encoded as distributions, i.e., we cannot expect the maximum values to be
exactly bounded below by 100 and above by 250.

Interestingly the behaviour of C(t) appears to be a monotonically decreasing function, so if we apply monotonic
transformations to the parameters we currently have, we should still obverse the same behaviour we see here.

Let’s first find an upper bound for the parameter values given C(0) = 0.001, while keeping in mind the
behiavour of C(t) given other C(0) values. Note that this will serve as our 2τ bound as that roughly
corresponds to the 97.5th percentile of C(t) values given our assumed normal distribution.

Intuitively, looking at our differential equations, we see that the change in EB counts are directly related to
the µ parameter from the “death” component of ∂C∂t and the k1 parameter. So in order to find these high
values for C(t), we’d want to minimize parameters like µ because they contribute to a greater negative change
in C per unit of time. Conversely, we’d like to increase parameters such as P, k2 since they contribute to a
more positive C value. The two k parameters k1, k2 are shared between at least one equation. Specifically k1
is shared between all 3 as it appears to be a scaling factor for the rate of infection, and from preliminary
exploration, we find that a decrease in k1 is associated with a decrease in C.

From using a grid-search approach (done by hand but could be done computationally), we were able to narrow
down some parameter values that achieve our goal of finding the upper 5% of C values given C(0) = 0.001.
But we also note that the “default” parameters provided for C(0) = 0.1 are a very good starting points, and
the “defaults” acted as centres for our search. Then, we multiplied the “defaults” by certain multipliers to
get our new parameter values. Specifically, we took:

1. P = 1000 · 1.125
2. k1 = 0.1

1e−4 · 1e− 4
3. k2 = 0.8 · 4
4. γ = 1.2 · 1.1
5. µ = 1.2 · 0.165
6. PE = 40 · 1e− 4
7. δe = 2

Note that parameters 6,7 (Pe, δe) are fixed.

Here’s the resulting plot (the corresponding plot for C(0) = 1 is in the appendix under “task 1 plots”):
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Conversely, we want to find the set of parameters that give us low values for C. These will act as the 5th
percentile, i.e., those at −2τ .

To obtain this set of parameters, we want to do the opposite of what we did before. For example, we’d want
to increase the value for µ because, we want the death of EBs to increase and for the infection rate to increase.
We’d also want the rate of lysis bursts to increase too.
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Again, we used a “grid search” approach done by hand. We used multipliers of the “defaults”, while keeping
in mind the other inital values for C. Specifically, we took:

1. P = 1000 · 0.875
2. k1 = 0.00000875/1e− 4 = 0.875
3. k2 = 0.8 · 3.85
4. γ = 1.2 · 1.45
5. µ = 1.2 · 0.55
6. PE = 40 · 1e− 4
7. δe = 2

Note again that parameters 6,7 (Pe, δe) are fixed.

Here’s the resulting plot (the corresponding plot for C(0) = 1 is in the appendix under “task 1 plots”):
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Now we’ve got two sets of parameters that correspond to high values of C for varying initial states and low
values of C for varying initial states:

1. P = (875, 1125)
2. k1 = (0.875, 1)
3. k2 = (3.08, 3.2)
4. γ = (1.32, 1.68)
5. µ = (0.198, 0.6)
6. PE = 40 · 1e− 4
7. δe = 2

Note that the first element of the tuples correspond to “low values”.

These are sensible bounds for our distribution of parameters because they are consistent with all of the key
pieces of information we know about this situation. In particular, they all represent parameters where the
infection clears up at day 30 while the maximum values of C(t) cover the values of M , i.e., [100, 250].

Since we set these to be ±2τ , we know that the average is the centre of the distribution for these parameters.
Additionally, we can find τ for each parameter. After some calculations, we get distributions (µ, τ) for the
first 5 parameters (the last two are fixed):

1. P ∼ N(1000, 125)
2. k1 ∼ N(0.9375, 0.0625)
3. k2 ∼ N(3.14, 0.06)
4. γ ∼ N(1.5, 0.18)
5. µ ∼ N(0.399, 0.201)
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Finally, we find a distribution for σ, the standard deviation of yi. The most important consideration here is
the idea that we really shouldn’t have negative C values because negative cell counts are illogical. It follows
then that σ must be constrained by low values of yi, i.e., the counts of EBs, which we also know as C. In
constructing our priors, we know that it is possible for us to get C values on the order of 10−6. We didn’t see
any values on the order of 10−7 or less while setting priors. Thus, our τσ must also be at most on the order
of 10−6, as we don’t want to get negative values for C. The distributions of our priors already encode all of
our key information about C, and we expect to be centered around the centre of yi, i.e., µ. So µσ should be
0. So considering that our other prior distributions should produce quantities of µ that meet our key pieces
of information, what should we do with τσ?

Here’s where we believe we should consider our priors to be weakly informative, i.e., we only know some
information about our problem. Clearly, we don’t know much about biology or Chlamydia specifically beyond
the paragraph at the start of the assignment. As such, we should have a fairly relaxed value for τσ. Again,
we’ll set a value for 2τσ. Recall that our lowest values for C we observe with our 2τ values for the other
parameters lead us to values on the order of 10−6. For example:

mu time chain_iter cell_type
1.5e-06 30.00 chain 1, iteration 1 c
1.5e-06 29.99 chain 1, iteration 1 c
1.5e-06 29.98 chain 1, iteration 1 c
1.6e-06 29.97 chain 1, iteration 1 c
1.6e-06 29.96 chain 1, iteration 1 c
1.6e-06 29.95 chain 1, iteration 1 c

Thus, we set 2τσ to be 9e− 7, and which means τσ = 4.5e− 7. This is about as big as τσ can get while still
allowing for values of yi to be greater than 0.

However, in actually running the model, having such a small τσ runs into numerical stability issues and
with the MCMC sampler sampling values for σ that are essentially 0. Taking this issue of practicality into
consideration, we increased τσ to 4.5e − 1. This will give us negative values for yi, but we just note that
negative values are nonsensical and an artifact of numerical stability concerns. Additionally, most sampled yi
values from the posterior predictive distribution should still be positive and we should still see behaviour
consistent with a smaller τσ value, i.e., the infection clears up around day 30.

To recap, our list of distributions for parameters is:

1. P ∼ N(1000, 125)
2. k1 ∼ N(0.9375, 0.0625)
3. k2 ∼ N(3.14, 0.06)
4. γ ∼ N(1.56, 0.12)
5. µ ∼ N(0.399, 0.201)
6. σ ∼ N+(0, 4.5e− 1)
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Task 2: Fit the data (experimental conditions).
Quick Overview
In fitting the model to all 4 “participants” (Guinea Pigs), we found that σ showed the most evidence of
prior-data conflict, i.e., there was considerable distance between the distribution of σ from the posterior and
that from the prior. We will over this most in detail in the section regarding “participant 1” with other
sections being less detailed due to avoid verbosity and redundancy. Additionally, all other parameters (µ, γ,
P , k1, k2) do not show much evidence, if any, of prior-data conflict across all “participants”. We call them
“participants” because while it is technically an average over different sized groups, “participant” is much
more concise.

This model indeed doesn’t seem to be a very good model of a Chlamydia infection, particularly with
C(0) = 0.001 as made obvious with the time course plot of predicted values of participant 1. As such, we
didn’t try to really adjust τσ to that the distributions really overlap; as we will see, the posterior values of
sigma are quite far from 0, and adjusting τσ would easily allow for extremely negative values for yi, which
doesn’t seem sensical given that yi is a cell count. This will be explained further below with graphs.

Finally, for every graph that overlays the prior distribution over the posterior distribution, the distribution
coloured in darker blue is the posterior distribution (and the lighter is the prior distribution). The legend
was elimated for clarity sake and to avoid redundancy in a grid.

Participant 1: Guinea Pig data with number = 2
Prior predictive checks/Comparison of prior and posterior distributions

First, we’ll take a look at the prior predictive distribution:

y_pred[9] y_pred[10]

y_pred[5] y_pred[6] y_pred[7] y_pred[8]

y_pred[1] y_pred[2] y_pred[3] y_pred[4]

0 4000008000001200000 0e+001e+062e+063e+06

0 100002000030000 0 20000400006000080000 0 50000100000150000200000 0e+001e+052e+053e+054e+055e+05

0 200 400 600 800 0 500 100015002000 0 10002000300040005000 0 5000 10000

We see from the histograms across our range of time points (days 3 to 30) that the distribution of EB counts
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Eric Zhu TASK 2: FIT THE DATA (EXPERIMENTAL CONDITIONS).

are reasonable with the exception of consistently extremely tails. Note that these extremely long tails are
less than 5% of the total density and the summary of the prior predictive distribution shows 95th percentile
quantities that are consistent with what we’d expect, e.g., 353.4148500 for the 95%th percentile of y_pred[1].
Additionally, they look good as the centre of the prior posterior distribution moves from being centered
around 200 to around 0, which is behaviour we know from the key information as it goes from having an
infection to having it mostly cleared up.
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Next, looking at the plots of the prior distributions versus the posterior distribution for each parameter,
we see that the posterior distributions for all parameters contract within the prior distribution, with the
exceptions of σ, P . σ as stated in the quick introduction shows substantial evidence of prior-data conflict due
to the large distance in between the centres of the prior and posterior distribution; however, the posterior
distribution is in a location where there is still density under the prior distribution. Since the location of
the posterior distribution of σ is far from 0, we could increase the centre of the prior on σ, but that would
be actively making it so that we would get negative yi values, which are EB counts; thus it doesn’t seem
sensible to increase the centre of σ. The difference in centres could be due to the model not being a good
model for the count of EBs, similar to how using model 2 on homework 1 resulted in prior-data conflict for σ.
In homework 1 the data in homework 1 was generated using model 1. The plot for P also shows some signs of
prior data conflict but there is clearly some density from the prior distribution covering that of the posterior.
We also decided to not change the prior on P because we weren’t able to find a set that worked better and
was “more justified” as weakly informative priors, which is what we went for in task 1. We will further justify
why we kept these priors later on with a time course plot, ancillary test statistics, and a density overlay.

We did originally set τσ to 4.5e− 7, but as mentioned above, but we increased it, as mentioned above, due
to numerical stability issues. We settled on the current value of τσ because it gives us posterior predicitive
distributions that conform to counts of EBs not being really negative as is evident in the time course plot
while also allowing for the model to complete.
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Evaluation of ancillary test statitics

Recall that since we are using normal distributions, reasonable ancillary test statistics are min, max, and
skewness.

−10 −5 0 5 10

T = min
T(yrep)

T(y)

20 30 40

T = max
T(yrep)

T(y)

Figure 1: Test statistics plots of min, max - participant 1

From the two ancillary test statistics above, we see that the model was able to capture the min test statistic
quite well while the model was unable to capture the max test statistic. The model actually captured the min
test statistic quite well; the data min is almost right at the centre of the T (yrep) distribution. We believe that
the model was unable to capture the max test statistic because when fitting the model, we notice that the
data for participant 1 mostly includes 0s, and so the max of the observations for participant 1 seems like a
sort of “influential point”. We can see this further down below in the time course plot, where the ypred draws
show that the model is unable to predict for the peak measurement of participant 1. So again, this may just
be that the model we choose to use, i.e., the differential equation model is a poor model for this data.

−2 −1 0 1 2

T = skewness
T(yrep)

T(y)

Figure 2: Test statistics plots of sknewness - participant 1

We see again that the model was fairly well able to capture the skewness test statistic as it’s relatively close
to the centre of the T (yrep) distribution.
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Evaluation of the time course plot
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Figure 3: Time course plot - participant 1

We see that the model was unable to capture the actual behaviour of the data, i.e., the shape we saw when
choosing the priors, where it was steeply upwards sloping and steeply downwards sloping with eventually
asymptotic behaviour. Instead, this model fit a weakly downwards sloping trend that went through the
“centre” of the data points, sort of similar to model 1 of homework 1. It was unable to capture points like a
count of 0 at day 3 and the peak measurement, but was actually able to capture the majority of the points.
This could very well be the reason of the prior-data conflict we see above; the model is just a really bad
model at capturing the true behaviour of the EB counts. Additionally, other various combinations of prior
values didn’t change the behaviour of this model, which contributed to us keeping these priors.

0 10 20 30 40

y
yrep

Figure 4: Estimated density of y vs replicated dataset density - participant 1

From the plot we see that the model performed poorly in replicating the density of y values around 5-20,
i.e., the replicated data sets had a higher density of values around 5-20 than the observed one. The model’s
densities of yrep also vary wildly depending on the sample from the posterior predictive distribution as the
teal lines vary greatly. This is extremely indicative of a bad fit on the data. So again, it seems the the model
is a bad model for the data.

Conclusion for participant 1

Overall, we believe we have justified priors because it seems that much of the issues regarding prior-data
conflicts are due to the model just being a poor model for this data, which is most evident from the time
course plot, which managed to cover most of the data points but not the behaviour of the EB counts over
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time. The density overlay also very clearly shows that this model is a poor fit for the data. Ignoring potential
issues with the model, such as the max ancillary test statistic (which may be due to the model not being able
to capture the data’s true behaviour), we much our evaluation of the priors such as the prior vs posterior plots
and other test statistics indicate behaviours expected from weakly informative priors. We feel comfortable
keeping these priors.
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Participant 2: Guinea Pig data with number = 5
Prior predictive checks/Comparison of prior and posterior distributions

We’ll again first take a look at the prior predictive distribution:

y_pred[9] y_pred[10]

y_pred[5] y_pred[6] y_pred[7] y_pred[8]

y_pred[1] y_pred[2] y_pred[3] y_pred[4]

0 50000010000001500000 0e+001e+062e+063e+064e+06

0 10000200003000040000 0 3000060000900001200000e+00 1e+05 2e+05 3e+05 0e+002e+054e+056e+05

0 300 600 900 1200 0 1000 2000 3000 0 200040006000 0 50001000015000

We see from the histograms across our range of time points (days 3 to 30) that the distribution of EB counts
are reasonable with the exception of consistently extremely tails similar to participant 1. Again, the super
long tails consist of density that is less than 5% of the total density. The posterior predictive distributions
also start out from values we’d expect to see and show that the infection clears up by day around day 30, i.e.,
from around 250 to around 0.
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Next, looking at the plots of the prior distributions versus the posterior distribution for each parameter,
we see that the posterior distributions for all parameters contract within the prior distribution, with the
exceptions of σ, P . σ as stated in the quick introduction shows substantial evidence of prior-data conflict due
to the large distance in between the centres of the prior and posterior distribution; however, the posterior
distribution is in a location where there is still density under the prior distribution. Since the location of
the posterior distribution of σ is far from 0, we could increase the centre of the prior on σ, but that would
be actively making it so that we would get negative yi values, which are EB counts; thus it doesn’t seem
sensible to increase the centre of σ. The difference in centres could be due to the model not being a good
model for the count of EBs, similar to how using model 2 on homework 1 resulted in prior-data conflict for σ.
In homework 1 the data in homework 1 was generated using model 1. The plot for P also shows some signs
of prior data conflict but there is clearly some density from the prior distribution’s long left tail covering that
of the posterior. This is somewhat in contrast to partcipant 1 as there is much greater overlap between the
two distributions of P here. We also decided to not change the prior on P because we weren’t able to find
a set that worked better and was “more justified” as weakly informative priors, which is what we went for
in task 1. We will further justify why we kept these priors later on with a time course plot, ancillary test
statistics, and a density overlay.

Evaluation of ancillary test statitics

Recall that since we are using normal distributions, reasonable ancillary test statistics are min, max, and
skewness.

From the two ancillary test statistics above, we see that the model was able to capture the min test statistic
quite well while the model barely able to capture the max test statistic. The model actually captured the min
test statistic quite well; the data min is almost right at the centre of the T (yrep) distribution. We believe
that the model was unable to capture the max test statistic for reasons similar to participant 1, i.e., most of
the data was quite far from the rest of the other data points. So again, this may just be that the model we
choose to use, i.e., the differential equation model is a poor model for this data.

We see again that the model was able to capture the skewness test statistic as it’s extremely close to the
centre of the T (yrep) distribution.
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Figure 5: Test statistics plots of min, max - partcipant 2
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Figure 6: Test statistics plots of sknewness - participant 2

Evaluation of the time course plot
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Figure 7: Time course plot - participant 2

Like participant 1, the model was unable to capture the actual behaviour of the data. Instead, this model
again fit a downwards sloping trend that went through the “centre” of the data points, sort of similar to
model 1 of homework 1. It was unable to capture the peak measurement, but was actually able to capture
the majority of the points and have predictions close to the majority of the points. This again could very
well be the reason of the prior-data conflict we see above; the model is just a really bad model at capturing
the true behaviour of the EB counts. We also, like for participant 1, tried various other combinations of prior
values, which didn’t change the behaviour of this model that contributed to us keeping these priors.
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Figure 8: Estimated density of y vs replicated dataset density - participant 2

From the plot we see that the model performed poorly in replicating the density of y values around 0-100, i.e.,
the replicated data sets had a consistently higher density of values around 0-100 than the observed one. The
model’s densities of yrep also vary wildly depending on the sample from the posterior predictive distribution
as the teal lines vary greatly. This is extremely indicative of a bad fit on the data. So again, it seems the the
model is a bad model for the data.

Conclusion for participant 2

Examining participant 2, makes us once again believe we have justified priors because it seems that much of
the issues regarding prior-data conflicts are due to the model just being a poor model for this data, which
again is most evident from the time course plot, which managed to cover most of the data points but not the
behaviour of the EB counts over time. The density overlay also very clearly shows that this model is a poor
fit for the data. Ignoring potential issues with the model, such as the max ancillary test statistic (which may
be due to the model not being able to capture the data’s true behaviour), we much our evaluation of the
priors such as the prior vs posterior plots and other test statistics indicate behaviours expected from weakly
informative priors. We still feel comfortable keeping these priors.
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Eric Zhu TASK 2: FIT THE DATA (EXPERIMENTAL CONDITIONS).

Participant 3: Guinea Pig with number = 7
Prior predictive checks/Comparison of prior and posterior distributions

We’ll again first take a look at the prior predictive distribution:

y_pred[9] y_pred[10]

y_pred[5] y_pred[6] y_pred[7] y_pred[8]

y_pred[1] y_pred[2] y_pred[3] y_pred[4]

0e+00 5e+05 1e+06 0e+001e+062e+063e+06

0 100002000030000 0 250005000075000 0 50000100000150000200000 0e+00 2e+05 4e+05

0 250 500 750 0 500100015002000 0 2000 4000 6000 0 5000 10000 15000

We see from the histograms across our range of time points (days 3 to 30) that the distribution of EB counts
are reasonable with the exception of consistently extremely tails similar to all other participants. Again,
the super long tails consist of density that is less than 5% of the total density. The posterior predictive
distributions also start out from values we’d expect to see and show that the infection clears up by day
around day 30, i.e., from around 150 to around 0.
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Next, looking at the plots of the prior distributions versus the posterior distribution for each parameter,
we see that the posterior distributions for all parameters contract within the prior distribution, with the
exceptions of σ, P . σ as stated in the quick introduction shows substantial evidence of prior-data conflict due
to the large distance in between the centres of the prior and posterior distribution; however, the posterior
distribution is in a location where there is still density under the prior distribution. Since the location of
the posterior distribution of σ is far from 0, we could increase the centre of the prior on σ, but that would
be actively making it so that we would get negative yi values, which are EB counts; thus it doesn’t seem
sensible to increase the centre of σ. The difference in centres could be due to the model not being a good
model for the count of EBs, similar to how using model 2 on homework 1 resulted in prior-data conflict for σ.
In homework 1 the data in homework 1 was generated using model 1. The plot for P also shows some signs
of prior data conflict but there is clearly some density from the prior distribution’s long left tail covering
that of the posterior, which seems very similar to participant 1. We also decided to not change the prior on
P because we weren’t able to find a set that worked better and was “more justified” as weakly informative
priors, which is what we went for in task 1. We will further justify why we kept these priors later on with a
time course plot, ancillary test statistics, and a density overlay.

Evaluation of ancillary test statitics

Recall that since we are using normal distributions, reasonable ancillary test statistics are min, max, and
skewness.
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Figure 9: Test statistics plots of min, max - participant 3
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From the two ancillary test statistics above, we see that the model was able to capture both test statistics
quite well, unlike the previous two participants as we see that the test statistic in both distributions are close
to the centre of the two distributions. This is likely due to the data for this participant having low variance.

0.0 0.5 1.0 1.5 2.0

T = skewness
T(yrep)

T(y)

Figure 10: Test statistics plots of sknewness - participant 3

We see again that the model was fairly well able to capture the skewness test statistic as it’s extremely close
to the centre of the T (yrep) distribution. So all 3 test statistics were well captured by this model.
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Evaluation of the time course plot
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Figure 11: Time course plot - participant 3

Like the previous two participants, the model was unable to capture the actual behaviour of the data. Instead,
this model again fit a downwards sloping trend that went through the “centre” of the data points, sort of
similar to model 1 of homework 1. It was unable to capture the peak measurement, but was actually able
to capture the majority of the points and have predictions close to the majority of the points. This again
could very well be the reason of the prior-data conflict we see above; the model is just a really bad model at
capturing the true behaviour of the EB counts. We also,like for the other participants, tried various other
combinations of prior values, which didn’t change the behaviour of this model that contributed to us keeping
these priors.
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Figure 12: Estimated density of y vs replicated dataset density - participant 3

From the plot we see that the model performed poorly in replicating the density of y values around 0-30, i.e.,
the replicated data sets had a consistently higher density of values around 0-30 than the observed one. The
model’s densities of yrep also vary wildly depending on the sample from the posterior predictive distribution
as the teal lines vary greatly. This is extremely indicative of a bad fit on the data. So again, it seems the the
model is a bad model for the data.

Conclusion for participant 3

Examining participant 3 still makes us believe we have justified priors. It seems that much of the issues
regarding prior-data conflicts are due to the model just being a poor model for this data, which again is most
evident from the time course plot that managed to cover most of the data points but not the behaviour of
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Eric Zhu TASK 2: FIT THE DATA (EXPERIMENTAL CONDITIONS).

the EB counts over time, similar to our analysis for the participants 1 and 2. The density overlay also very
clearly shows that this model is a poor fit for the data. With participant 3, much of our evaluation of the
priors such as the prior vs posterior plots and other test statistics indicate behaviours expected from weakly
informative priors. We still feel comfortable keeping these priors; especially because with so many of the
posterior predictive checks checking out and because the behaviour of the model seems to always fail
to capture the true behaviour, we believe this model is just simply a bad model.
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Participant 4: Guinea Pig with number = 11
Prior predictive checks/Comparison of prior and posterior distributions

We’ll again first take a look at the prior predictive distribution:

y_pred[9] y_pred[10]

y_pred[5] y_pred[6] y_pred[7] y_pred[8]

y_pred[1] y_pred[2] y_pred[3] y_pred[4]
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0 10000200003000040000 0 250005000075000100000 0e+00 1e+05 2e+05 0e+002e+054e+056e+05

0 250 500 750 1000 0 1000 2000 0 2000 4000 6000 0 50001000015000

We see from the histograms across our range of time points (days 3 to 30) that the distribution of EB counts
are reasonable with the exception of consistently extremely tails similar to participant 1. Again, the super
long tails consist of density that is less than 5% of the total density. The posterior predictive distributions
also start out from values we’d expect to see and show that the infection clears up by day around day 30, i.e.,
from around 175 to around 0.
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Next, looking at the plots of the prior distributions versus the posterior distribution for each parameter,
we see that the posterior distributions for all parameters contract within the prior distribution, with the
exceptions of σ, P . σ as stated in the quick introduction shows substantial evidence of prior-data conflict due
to the large distance in between the centres of the prior and posterior distribution; however, the posterior
distribution is in a location where there is still density under the prior distribution. Since the location of
the posterior distribution of σ is far from 0, we could increase the centre of the prior on σ, but that would
be actively making it so that we would get negative yi values, which are EB counts; thus it doesn’t seem
sensible to increase the centre of σ. The difference in centres could be due to the model not being a good
model for the count of EBs, similar to how using model 2 on homework 1 resulted in prior-data conflict for σ.
In homework 1 the data in homework 1 was generated using model 1. The plot for P also shows some signs
of prior data conflict but there is clearly some density from the prior distribution’s long left tail covering that
of the posterior. This is somewhat in contrast to partcipant 1 as there is much greater overlap between the
two distributions of P here. We also decided to not change the prior on P because we weren’t able to find
a set that worked better and was “more justified” as weakly informative priors, which is what we went for
in task 1. We will further justify why we kept these priors later on with a time course plot, ancillary test
statistics, and a density overlay.

Evaluation of ancillary test statitics

Recall that since we are using normal distributions, reasonable ancillary test statistics are min, max, and
skewness.

From the two ancillary test statistics above, we see that the model was able to capture the min test statistic
quite well while the model was somewhat able to capture the max test statistic. The model actually captured
the min test statistic quite well; the data min is almost right at the centre of the T (yrep) distribution. We
believe that the model was unable to capture the max test statistic for reasons similar to participants 1 and 2,
i.e., most of the data was quite far from the rest of the other data points. So again, this may just be that the
model we choose to use, i.e., the differential equation model is a poor model for this data.

We see again that the model was fairly well able to capture the skewness test statistic as it’s close to the
centre of the T (yrep) distribution.
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Figure 13: Test statistics plots of min, max - participant 4
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Figure 14: Test statistics plots of sknewness - participant 4

Evaluation of the time course plot
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Figure 15: Time course plot - participant 4

Like every other participant, the model was unable to capture the actual behaviour of the data. Instead, this
model again fit a downwards sloping trend that went through the “centre” of the data points, sort of similar
to model 1 of homework 1. It was unable to capture the peak measurement, but was actually able to capture
the majority of the points and have predictions close to the majority of the points. This again could very
well be the reason of the prior-data conflict we see above; the model is just a really bad model at capturing
the true behaviour of the EB counts. We also tried various other combinations of prior values, which didn’t
change the behaviour of this model that contributed to us keeping these priors.

From the plot we see that the model performed poorly in replicating the density of y values around 0-60, i.e.,
the replicated data sets had a consistently higher density of values around 0-60 than the observed one. The
model’s densities of yrep also vary wildly depending on the sample from the posterior predictive distribution
as the teal lines vary greatly. This is extremely indicative of a bad fit on the data. So again, it seems the the
model is a bad model for the data.
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Figure 16: Estimated density of y vs replicated dataset density - participant 4

Conclusion for participant 4

Analysing participant 4 still leads us to believe we have justified priors because it seems that much of the
issues regarding prior-data conflicts are due to the model just being a poor model for this data, which again
is most evident from the time course plot, which managed to cover most of the data points but not the
behaviour of the EB counts over time. The density overlay also very clearly shows that this model is a poor
fit for the data. Ignoring potential issues with the model, such as the max ancillary test statistic (which may
be due to the model not being able to capture the data’s true behaviour), we much our evaluation of the
priors such as the prior vs posterior plots and other test statistics indicate behaviours expected from weakly
informative priors. We still feel comfortable keeping these priors.

25



Eric Zhu TASK 3: HOW MANY EBS ARE PASSED SEXUALLY.

Task 3: How many EBs are passed sexually.
We need to average the conditional posterior p(C(0)|y, P, k1, k2, γ, µ, σ) over the joint posterior
p(P, k1, k2, γ, µ, σ|y) through multiple imputation.

First, we’ll specify a prior distribution on C(0); we’ll assume a normal distribution by the CLT. Since we
want to evaluate the statement in the task description, we’ll set µ for this prior to be 102 · 10−4. It is also the
only information we know about C(0) with respect to sexual infection. Since we know that C(0) should be
non-negative, we set τ to be 4e2 ∗ 1e− 5 because µ− 2 · (4e2 ∗ 1e− 5) should still be greater than 0.
draws_df <- as_draws_df(posterior_p4)
random_row <- sample(1:nrow(draws_df), 1)
days_data_raw <- sexual %>% arrange(t) %>% distinct(t)
days_data_conv <- days_data_raw %>% mutate(t = ((t - seq_start)/seq_timestep + 1)) %>% pull(t)
participant_data_sexual <- sexual %>% select(c(t, C, number))
%>% arrange(t, number) %>%pivot_wider(names_from = number, values_from = C)
%>% select(-c(t))%>%pull("11")
pred_times_t3<- sexual %>% select(t) %>% pull(t)
pred_times_seq_t3 <- seq(0.1, max(pred_times_t3), by = 0.01)

C0_list = list()
for(i in 1:100){

# draw a row of parameters from the posterior
sampled_row <- draws_df[random_row, ]
conditional_params <- list(

participants = 1,
n_days = length(pred_times_seq),
pred_times = pred_times_seq,
initial_cell_counts = c(9600*1e-4, 0.0),
n_measurements = sexual %>% select(t) %>% n_distinct(),
days_data = days_data_conv,
y = participant_data_sexual,
Pe = 40 * 1e-4,
delta_e = 2,
k1 = sampled_row %>% pull(k1),
k2 = sampled_row %>% pull(k2),
P = sampled_row %>% pull(P),
mu_param = sampled_row %>% pull(mu_param),
gamma = sampled_row %>% pull(gamma),
sigma = sampled_row %>% pull(sigma),
c0_mu = 1e2*1e-4,
c0_tau = 4e2*1e-5,
only_prior = 0

)
multi_imputation_fit <- imputation_model$

sample(conditional_params,seed = 365,
refresh = 1000, parallel_chains = 4 ,
iter_warmup = 1000, iter_sampling=200)

posterior_df <- as_draws_df(multi_imputation_fit$draws())
# draw a value of C(0)
random_row <- sample(1:nrow(posterior_df), 1)
append(C0_list, posterior_df[random_row, ])
# get a new random row to prep for drawing from posterior
random_row <- sample(1:nrow(draws_df), 1)

}
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We were unable to run this code in a reasonable amount of time (2+ hours), and it didn’t seem like there
were any coding errors, so the rest of this task will be based on my background knowledge. The stan code is
in the appendix.

Critical assessment of multiple imputation
Drawbacks

1. This methods requires putting a prior on the quantity you wish to generate distribution for. Then,
you need a sensible prior, which may require significant domain knowledge, experience in modelling
that kind of data such as epidemiological data. So this is different than black box methods like neural
networks or boosted trees, where it’s easy to tune a model despite having little domain knowledge. In
particular, putting a completely uninformative prior on C(0) would be ill advised, e.g., you may get
many negative values for C(0).

2. This takes an extremely long amount of time. On a modern CPU this algorithm was unable to finish.
MCMC sampling is still extremely slow compared to other methods and you need to finish running the
chain in order to get an acceptable ess_bulk size. On the contrary, other time consuming ML/Statistical
learning methods such as neural networks, which can take a notoriously long time to fit, are still able
to early stop because you are simply shift around weights/coefficients. This isn’t a perfect comparsion
as neural networks are often frequentist, but this algorithm takes a frankly crazy long amount of time.

Pros

1. I can’t tell empirically what happens with multiple imputation from the algorithm I wrote, but from
CSC311 and personal readings, I know that imputation allows for us to fill in missing values using some
algorithm. This is powerful because a lot of the time data is dirty or missing, so imputation would
allow for us to get a cleaner data set by imputing missing or bad values with plausible values.

2. Bayesian multiple imputation may be uniquely powerful because it allows us to construct a posterior
distribution for various given parameters. In comparison this could lead to more sensible imputed values
than say imputation using kNN. Over the course, we’ve seen how adding a prior, such as a weakly
informative prior can have regularizing properties, which is can be a drawback to MLE based methods.

Discussion of Rank et al.
I can’t say for certain what the distribution would look like for C(0), but I would expect it to be somewhat
similar to a distribution constructed using MAP estimates of parameters of the C(0) posterior distribution.
I’m honestly pretty bummed out that this wasn’t able to finish in a reasonable amount of time :(
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Appendix
Task 1 plots
High values of y given C(0) = 1
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Low values of y given C(0) = 1
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R code
Code used in rmd
kable(head(data %>% filter(dose != "sexual")))

kable(head(data %>% filter(dose == "sexual")))

opencl_options <- list(
stan_opencl = TRUE,
opencl_platform_id = 0, # replace the ID based on step 3
opencl_device_id = 0,
ldflags_opencl = "-L'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2\\lib\\x64'"

)
param_model <- cmdstan_model("a1_prior_exploration.stan", compile = TRUE)

ini_cell_counts <- c(E = 9600 * 1e-4, C = 1e1 * 1e-4, I = 0)
pred_times <- data %>%

filter(number == 2) %>%
select(t) %>%
pull(t)

# pred_times <- pred_times %>% insert(ats = 1, values = c(0.0))
pred_times_seq <- seq(0.1, max(pred_times), by = 0.01)
# length(pred_times_seq)
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# ini_cell_counts['E']

test_params_default <- list(
P = 1000,
k1 = 0.1 / 1e-4,
k2 = 0.8,
Pe = 40 * 1e-4,
delta_e = 2.0,
gamma = 1.2,
mu_param = 1.2,
initial_cell_counts = ini_cell_counts,
pred_times = pred_times_seq,
n_days = length(pred_times_seq)

)
# test_params_default$pred_times
test_params_default_ct <- param_model$sample(test_params_default,

seed = 365,
refresh = 0, fixed_param = T, chains = 1, iter_warmup = 10, iter_sampling = 1

)

cs <- test_params_default_ct$draws() %>%
reshape2::melt() %>%
dplyr::filter(str_detect(variable, "C")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "C\\[([0-9]*)\\]",
convert = TRUE

) %>%
dplyr::mutate(

time = test_params_default$pred_times[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(mu = value) %>%
mutate(cell_type = rep("c", test_params_default$n_days))

cs %>% ggplot(aes(x = time, y = mu)) +
geom_line(alpha = 1) +
theme_minimal() +
labs(x = "t: day", y = "C(t): EB count scaled by 10^-4")

test_params_hi <- list(
P = 1000 * 1.125,
k1 = 0.00001 / 1e-4,
k2 = 0.8 * 4,
Pe = 40 * 1e-4,
delta_e = 2,
gamma = 1.2 * 1.1,
mu_param = 1.2 * 0.165,
initial_cell_counts = ini_cell_counts,
pred_times = pred_times_seq,
n_days = length(pred_times_seq)
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)
test_params_hi_ct <- param_model$sample(test_params_hi, seed = 365, refresh = 0, fixed_param = T, chains = 1, iter_warmup = 10, iter_sampling = 1)

cs <- test_params_hi_ct$draws() %>%
reshape2::melt() %>%
dplyr::filter(str_detect(variable, "C")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "C\\[([0-9]*)\\]",
convert = TRUE

) %>%
dplyr::mutate(

time = test_params_hi$pred_times[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(mu = value) %>%
mutate(cell_type = rep("c", test_params_hi$n_days))

cs %>% ggplot(aes(x = time, y = mu)) +
geom_line(alpha = 1) +
theme_minimal() +
labs(x = "t, day", y = "C(t), EB count scaled by 10^-4")

test_params_lo <- list(
P = 1000 * 0.875,
k1 = 0.00000875 / 1e-4,
k2 = 0.8 * 3.85,
Pe = 40 * 1e-4,
delta_e = 2,
gamma = 1.2 * 1.45,
mu_param = 1.2 * 0.55,
initial_cell_counts = ini_cell_counts,
pred_times = pred_times_seq,
n_days = length(pred_times_seq)

)
test_params_lo_ct <- param_model$sample(test_params_lo, seed = 365, refresh = 0, fixed_param = T, chains = 1, iter_warmup = 10, iter_sampling = 1)

cs <- test_params_lo_ct$draws() %>%
reshape2::melt() %>%
dplyr::filter(str_detect(variable, "C")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "C\\[([0-9]*)\\]",
convert = TRUE

) %>%
dplyr::mutate(

time = test_params_lo$pred_times[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
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.keep = "unused"
) %>%
rename(mu = value) %>%
mutate(cell_type = rep("c", test_params_lo$n_days))

cs %>% ggplot(aes(x = time, y = mu)) +
geom_line(alpha = 1) +
theme_minimal() +
labs(x = "t, day", y = "C(t), EB count scaled by 10^-4")

kable(head(cs %>% arrange(desc(time))))

opencl_options <- list(
stan_opencl = TRUE,
opencl_platform_id = 0,
opencl_device_id = 0,
ldflags_opencl = "-L'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2\\lib\\x64'"

)
ode_model <- cmdstan_model("a1_single.stan", compile = TRUE, threads = 12)

participant_data <- non_sexual %>%
select(c(t, C, number)) %>%
arrange(t, number) %>%
pivot_wider(names_from = number, values_from = C) %>%
select(-c(t))

EB_counts_vec <- c(1e1 * 1e-4, 1e4 * 1e-4, 1e2 * 1e-4, 1e3 * 1e-4)
cell_counts <- matrix(NA, nrow = 4, ncol = 3)
cell_counts[1, ] <- c(9600 * 1e-4, 1e1 * 1e-4, 0.0)
cell_counts[2, ] <- c(9600 * 1e-4, 1e4 * 1e-4, 0.0)
cell_counts[3, ] <- c(9600 * 1e-4, 1e2 * 1e-4, 0.0)
cell_counts[4, ] <- c(9600 * 1e-4, 1e3 * 1e-4, 0.0)
seq_start <- 0.1
seq_timestep <- 0.05
pred_times_seq <- seq(seq_start, max(pred_times), by = seq_timestep)
num_measurements <- non_sexual %>%

select(t) %>%
n_distinct()

days_data_raw <- non_sexual %>%
arrange(t) %>%
distinct(t)

days_data_conv <- days_data_raw %>%
mutate(t = ((t - seq_start) / seq_timestep + 1)) %>%
pull(t)

data_list_single <- list(
participants = 1,
n_days = length(pred_times_seq),
pred_times = pred_times_seq,
initial_cell_counts = c(9600 * 1e-4, 1e1 * 1e-4, 0.0),
n_measurements = non_sexual %>% select(t) %>% n_distinct(),
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days_data = days_data_conv,
y = participant_data[, 1] %>% pull("2"),
Pe = 40 * 1e-4,
delta_e = 2,
k1_mu = 0.9375,
k1_tau = 0.0625,
k2_mu = 3.14,
k2_tau = 0.06,
P_mu = 1000,
P_tau = 125,
mu_param_mu = 0.399,
mu_param_tau = 0.201,
gamma_mu = 1.5,
gamma_tau = 0.18,
sigma_tau = 4.5e-1,
only_prior = 1

)

model_prior_fit_p1 <- ode_model$sample(data_list_single, seed = 365, refresh = 0, chains = 3, parallel_chains = 3)

model_prior_fit_p1$summary()

data_list_single$only_prior <- 0
model_fit_p1 <- ode_model$sample(data_list_single, seed = 365, refresh = 1500, chains = 3, parallel_chains = 3)

prior_p1 <- model_prior_fit_p1$draws()
posterior_p1 <- model_fit_p1$draws()

model_fit_p1$summary()

ypreds_p1 <- posterior_p1 %>%
reshape2::melt() %>%
filter(str_detect(variable, "y_pred")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE

)
ypreds_p1 <- ypreds_p1 %>%

mutate(
time = data_list_single$days_data[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(y_pred = value)

ypreds_p1 <- ypreds_p1 %>% mutate(time = (time + 1) * seq_timestep)

k1_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "posterior"))
k1_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "prior"))

k1_p1_comparison_df <- rbind(k1_prior_p1, k1_posterior_p1)
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k1_p1_plt <- ggplot(k1_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k1, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

k2_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "posterior"))
k2_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "prior"))

k2_p1_comparison_df <- rbind(k2_prior_p1, k2_posterior_p1)

k2_p1_plt <- ggplot(k2_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k2, Guinea Pig number 2")

# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

k2_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "posterior"))
k2_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "prior"))

k2_p1_comparison_df <- rbind(k2_prior_p1, k2_posterior_p1)

k2_p1_plt <- ggplot(k2_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k2, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

gamma_p1_posterior <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "posterior"))
gamma_p1_prior <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "prior"))

gamma_p1_comparison_df <- rbind(gamma_p1_posterior, gamma_p1_prior)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

gamma_p1_plt <- ggplot(gamma_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "gamma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

P_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "posterior"))
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P_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "prior"))

P_p1_comparison_df <- rbind(P_posterior_p1, P_prior_p1)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

P_p1_plt <- ggplot(P_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "P") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

mu_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "posterior"))
mu_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "prior"))

mu_p1_comparison_df <- rbind(mu_posterior_p1, mu_prior_p1)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

mu_p1_plt <- ggplot(mu_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "mu") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

sigma_posterior_p1 <- melt(as_draws_matrix(subset_draws(model_fit_p1$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "posterior"))
sigma_prior_p1 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p1$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "prior"))

sigma_p1_comparison_df <- rbind(sigma_posterior_p1, sigma_prior_p1)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

sigma_p1_plt <- ggplot(sigma_p1_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1, size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "sigma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

p1_prior_pred_draws <- model_prior_fit_p1$draws(c("y_pred[1]", "y_pred[2]", "y_pred[3]", "y_pred[4]", "y_pred[5]", "y_pred[6]", "y_pred[7]", "y_pred[8]", "y_pred[9]", "y_pred[10]"))
mcmc_hist(p1_prior_pred_draws) + scale_fill_manual(values = c(color_scheme_get()$light))

grid.arrange(k1_p1_plt, k2_p1_plt, mu_p1_plt, P_p1_plt, gamma_p1_plt, sigma_p1_plt, ncol = 2, nrow = 3)

min_p1 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p1, regex = TRUE, variable = "y_pred")), stat = "min")
max_p1 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p1, regex = TRUE, variable = "y_pred")), stat = "max")
grid.arrange(min_p1, max_p1, ncol = 2)

ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p1, regex = TRUE, variable = "y_pred")), stat = "skewness")
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ypreds_p1[sample(nrow(ypreds_p1), 30000), ] %>% ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data %>% filter(number == 2), mapping = aes(t, C), inherit.aes = FALSE) +
theme_minimal() +
labs(x = "t", y = "y/y_pred")

ppc_dens_overlay(
y = data_list_single$y,
yrep = head(as_draws_matrix(subset_draws(posterior_p1, regex = TRUE, variable = "y_pred")), 100)

)

data_list_single$only_prior <- 1
data_list_single$initial_cell_counts <- c(9600 * 1e-4, 1e4 * 1e-4, 0.0)
data_list_single$y <- participant_data[, 2] %>% pull("5")

model_prior_fit_p2 <- ode_model$sample(data_list_single, seed = 365, refresh = 0, chains = 3, parallel_chains = 4)

data_list_single$only_prior <- 0
model_fit_p2 <- ode_model$sample(data_list_single, seed = 365, refresh = 0, chains = 3, parallel_chains = 4)

prior_p2 <- model_prior_fit_p2$draws()
posterior_p2 <- model_fit_p2$draws()

ypreds_p2 <- posterior_p2 %>%
reshape2::melt() %>%
filter(str_detect(variable, "y_pred")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE

)
ypreds_p2 <- ypreds_p2 %>%

mutate(
time = data_list_single$days_data[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(y_pred = value)

ypreds_p2 <- ypreds_p2 %>% mutate(time = (time + 1) * seq_timestep)

k1_posterior_p2 <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "posterior"))
k1_prior_p2 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "prior"))

k1_p2_comparison_df <- rbind(k1_prior_p2, k1_posterior_p2)

k1_p2_plt <- ggplot(k1_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k1, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))
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k2_posterior_p2 <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "posterior"))
k2_prior_p2 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "prior"))

k2_p2_comparison_df <- rbind(k2_prior_p2, k2_posterior_p2)

k2_p2_plt <- ggplot(k2_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k2, Guinea Pig number 2")

# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

gamma_p2_posterior <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "posterior"))
gamma_p2_prior <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "prior"))

gamma_p2_comparison_df <- rbind(gamma_p2_posterior, gamma_p2_prior)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

gamma_p2_plt <- ggplot(gamma_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "gamma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

P_posterior_p2 <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "posterior"))
P_prior_p2 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "prior"))

P_p2_comparison_df <- rbind(P_posterior_p2, P_prior_p2)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

P_p2_plt <- ggplot(P_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "P") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

mu_posterior_p2 <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "posterior"))
mu_prior_p2 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "prior"))

mu_p2_comparison_df <- rbind(mu_posterior_p2, mu_prior_p2)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))
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mu_p2_plt <- ggplot(mu_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "mu") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

sigma_posterior_p2 <- melt(as_draws_matrix(subset_draws(model_fit_p2$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "posterior"))
sigma_prior_p2 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p2$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "prior"))

sigma_p2_comparison_df <- rbind(sigma_posterior_p2, sigma_prior_p2)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

sigma_p2_plt <- ggplot(sigma_p2_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1, size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "sigma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

p2_prior_pred_draws <- model_prior_fit_p2$draws(c("y_pred[1]", "y_pred[2]", "y_pred[3]", "y_pred[4]", "y_pred[5]", "y_pred[6]", "y_pred[7]", "y_pred[8]", "y_pred[9]", "y_pred[10]"))
mcmc_hist(p2_prior_pred_draws) + scale_fill_manual(values = c(color_scheme_get()$light))

grid.arrange(k1_p2_plt, k2_p2_plt, mu_p2_plt, P_p2_plt, gamma_p2_plt, sigma_p2_plt, ncol = 2, nrow = 3)

min_p2 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p2, regex = TRUE, variable = "y_pred")), stat = "min")
max_p2 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p2, regex = TRUE, variable = "y_pred")), stat = "max")
grid.arrange(min_p2, max_p2, ncol = 2)

ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p2, regex = TRUE, variable = "y_pred")), stat = "skewness")

ypreds_p2[sample(nrow(ypreds_p2), 30000), ] %>% ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data %>% filter(number == 5), mapping = aes(t, C), inherit.aes = FALSE) +
theme_minimal() +
labs(x = "t", y = "y/y_pred")

ppc_dens_overlay(
y = data_list_single$y,
yrep = head(as_draws_matrix(subset_draws(posterior_p2, regex = TRUE, variable = "y_pred")), 100)

)

data_list_single$only_prior <- 1
data_list_single$initial_cell_counts <- c(9600 * 1e-4, 1e2 * 1e-4, 0.0)
data_list_single$y <- participant_data[, 3] %>% pull("7")

model_prior_fit_p3 <- ode_model$sample(data_list_single, seed = 365, refresh = 1000, chains = 3, parallel_chains = 4)

data_list_single$only_prior <- 0
model_fit_p3 <- ode_model$sample(data_list_single, seed = 365, refresh = 1000, chains = 3, parallel_chains = 4)
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prior_p3 <- model_prior_fit_p3$draws()
posterior_p3 <- model_fit_p3$draws()

ypreds_p3 <- posterior_p3 %>%
reshape2::melt() %>%
filter(str_detect(variable, "y_pred")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE

)
ypreds_p3 <- ypreds_p3 %>%

mutate(
time = data_list_single$days_data[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(y_pred = value)

ypreds_p3 <- ypreds_p3 %>% mutate(time = (time + 1) * seq_timestep)

k1_posterior_p3 <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "posterior"))
k1_prior_p3 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "prior"))

k1_p3_comparison_df <- rbind(k1_prior_p3, k1_posterior_p3)

k1_p3_plt <- ggplot(k1_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k1, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

k2_posterior_p3 <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "posterior"))
k2_prior_p3 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "prior"))

k2_p3_comparison_df <- rbind(k2_prior_p3, k2_posterior_p3)

k2_p3_plt <- ggplot(k2_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k2, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

gamma_p3_posterior <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "posterior"))
gamma_p3_prior <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "prior"))
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gamma_p3_comparison_df <- rbind(gamma_p3_posterior, gamma_p3_prior)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

gamma_p3_plt <- ggplot(gamma_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "gamma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

P_posterior_p3 <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "posterior"))
P_prior_p3 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "prior"))

P_p3_comparison_df <- rbind(P_posterior_p3, P_prior_p3)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

P_p3_plt <- ggplot(P_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "P") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

mu_posterior_p3 <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(),
regex = TRUE,
variable = "mu"))) %>%

mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "posterior"))
mu_prior_p3 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(),

regex = TRUE, variable = "mu"))) %>%
mutate(variable = str_replace_all(variable, pattern = "mu*",

replacement = "prior"))

mu_p3_comparison_df <- rbind(mu_posterior_p3, mu_prior_p3)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

mu_p3_plt <- ggplot(mu_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "mu") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

sigma_posterior_p3 <- melt(as_draws_matrix(subset_draws(model_fit_p3$draws(), regex = TRUE, variable = "sigma"))) %>%
mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "posterior"))

sigma_prior_p3 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p3$draws(), regex = TRUE, variable = "sigma"))) %>%
mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "prior"))

sigma_p3_comparison_df <- rbind(sigma_posterior_p3, sigma_prior_p3)
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# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

sigma_p3_plt <- ggplot(sigma_p3_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1, size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "sigma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

p3_prior_pred_draws <- model_prior_fit_p3$draws(c("y_pred[1]", "y_pred[2]", "y_pred[3]", "y_pred[4]", "y_pred[5]", "y_pred[6]", "y_pred[7]", "y_pred[8]", "y_pred[9]", "y_pred[10]"))
mcmc_hist(p3_prior_pred_draws) + scale_fill_manual(values = c(color_scheme_get()$light))

grid.arrange(k1_p3_plt, k2_p3_plt, mu_p3_plt, P_p3_plt, gamma_p3_plt, sigma_p3_plt, ncol = 2, nrow = 3)

min_p3 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p3, regex = TRUE, variable = "y_pred")), stat = "min")
max_p3 <- ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p3, regex = TRUE, variable = "y_pred")), stat = "max")
grid.arrange(min_p3, max_p3, ncol = 2)

ppc_stat(y = data_list_single$y, yrep = as_draws_matrix(subset_draws(posterior_p3, regex = TRUE, variable = "y_pred")), stat = "skewness")

ypreds_p3[sample(nrow(ypreds_p3), 30000), ] %>% ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data %>% filter(number == 5), mapping = aes(t, C), inherit.aes = FALSE) +
theme_minimal() +
labs(x = "t", y = "y/y_pred")

ppc_dens_overlay(
y = data_list_single$y,
yrep = head(as_draws_matrix(subset_draws(posterior_p3, regex = TRUE, variable = "y_pred")), 100)

)

data_list_single$initial_cell_counts <- c(9600 * 1e-4, 1e3 * 1e-4, 0.0)
data_list_single$y <- participant_data[, 4] %>% pull("11")
data_list_single$only_prior <- 1

model_prior_fit_p4 <- ode_model$sample(data_list_single, seed = 365, refresh = 1000, chains = 3, parallel_chains = 4)

data_list_single$only_prior <- 0
model_fit_p4 <- ode_model$sample(data_list_single, seed = 365, refresh = 1000, chains = 3, parallel_chains = 4)

prior_p4 <- model_prior_fit_p4$draws()
posterior_p4 <- model_fit_p4$draws()

ypreds_p4 <- posterior_p4 %>%
reshape2::melt() %>%
filter(str_detect(variable, "y_pred")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "y_pred\\[([0-9]*)\\]",
convert = TRUE

)
ypreds_p4 <- ypreds_p4 %>%
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mutate(
time = data_list_single$days_data[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(y_pred = value)

ypreds_p4 <- ypreds_p4 %>% mutate(time = (time + 1) * seq_timestep)

k1_posterior_p4 <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "posterior"))
k1_prior_p4 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "k1"))) %>% mutate(variable = str_replace_all(variable, pattern = "k1.*", replacement = "prior"))

k1_p4_comparison_df <- rbind(k1_prior_p4, k1_posterior_p4)

k1_p4_plt <- ggplot(k1_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k1, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

k2_posterior_p4 <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "posterior"))
k2_prior_p4 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "k2"))) %>% mutate(variable = str_replace_all(variable, pattern = "k2.*", replacement = "prior"))

k2_p4_comparison_df <- rbind(k2_prior_p4, k2_posterior_p4)

k2_p4_plt <- ggplot(k2_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "k2, Guinea Pig number 2") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

gamma_p4_posterior <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "posterior"))
gamma_p4_prior <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "gamma"))) %>% mutate(variable = str_replace_all(variable, pattern = "gamma*", replacement = "prior"))

gamma_p4_comparison_df <- rbind(gamma_p4_posterior, gamma_p4_prior)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

gamma_p4_plt <- ggplot(gamma_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "gamma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

P_posterior_p4 <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "posterior"))
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P_prior_p4 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "P"))) %>% mutate(variable = str_replace_all(variable, pattern = "P*", replacement = "prior"))

P_p4_comparison_df <- rbind(P_posterior_p4, P_prior_p4)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

P_p4_plt <- ggplot(P_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "P") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

mu_posterior_p4 <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "posterior"))
mu_prior_p4 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "mu"))) %>% mutate(variable = str_replace_all(variable, pattern = "mu*", replacement = "prior"))

mu_p4_comparison_df <- rbind(mu_posterior_p4, mu_prior_p4)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

mu_p4_plt <- ggplot(mu_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "mu") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight, color_scheme_get()$light_highlight))

sigma_posterior_p4 <- melt(as_draws_matrix(subset_draws(model_fit_p4$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "posterior"))
sigma_prior_p4 <- melt(as_draws_matrix(subset_draws(model_prior_fit_p4$draws(), regex = TRUE, variable = "sigma"))) %>% mutate(variable = str_replace_all(variable, pattern = "sigma*", replacement = "prior"))

sigma_p4_comparison_df <- rbind(sigma_posterior_p4, sigma_prior_p4)
# comparison_prior_df <- comparison_prior_df %>% mutate(variable = str_replace_all(comparison_prior_df$variable, pattern="mu.*", replacement = "mu"))

sigma_p4_plt <- ggplot(sigma_p4_comparison_df, aes(x = value, fill = variable, color = variable)) +
geom_histogram(alpha = 1, size = 0.25) +
scale_fill_manual(values = c(color_scheme_get()$dark, color_scheme_get()$light)) +
theme_minimal() +
theme(legend.position = "none") +
labs(x = "sigma") +
scale_color_manual(values = c(color_scheme_get()$dark_highlight,

color_scheme_get()$light_highlight))

p4_prior_pred_draws <- model_prior_fit_p4$draws(c("y_pred[1]", "y_pred[2]",
"y_pred[3]", "y_pred[4]",
"y_pred[5]", "y_pred[6]",
"y_pred[7]", "y_pred[8]",
"y_pred[9]", "y_pred[10]"))

mcmc_hist(p4_prior_pred_draws) + scale_fill_manual(values =
c(color_scheme_get()$light))

grid.arrange(k1_p4_plt, k2_p4_plt, mu_p4_plt, P_p4_plt, gamma_p4_plt,
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sigma_p4_plt, ncol = 2, nrow = 3)

min_p4 <- ppc_stat(y = data_list_single$y,
yrep = as_draws_matrix(subset_draws(posterior_p4,

regex = TRUE,
variable = "y_pred")),

stat = "min")
max_p4 <- ppc_stat(y = data_list_single$y,

yrep = as_draws_matrix(subset_draws(posterior_p4,
regex = TRUE,
variable = "y_pred")),

stat = "max")
grid.arrange(min_p4, max_p4, ncol = 2)

ppc_stat(y = data_list_single$y, yrep =
as_draws_matrix(subset_draws(

posterior_p4, regex = TRUE,
variable = "y_pred")), stat = "skewness")

ypreds_p4[sample(nrow(ypreds_p4), 30000), ] %>%
ggplot(aes(time, y_pred, group = chain_iter)) +
geom_line(alpha = 0.007) +
geom_point(data = data %>% filter(number == 5),

mapping = aes(t, C), inherit.aes = FALSE) +
theme_minimal() +
labs(x = "t", y = "y/y_pred")

ppc_dens_overlay(
y = data_list_single$y,
yrep = head(as_draws_matrix(

subset_draws(posterior_p4, regex = TRUE, variable = "y_pred")), 100)
)

opencl_options <- list(
stan_opencl = TRUE,
opencl_platform_id = 0,
opencl_device_id = 0,
ldflags_opencl =

"-L'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2\\lib\\x64'"
)
imputation_model <- cmdstan_model("a1_task3.stan", compile = TRUE, threads = 12)

draws_df <- as_draws_df(posterior_p4)
random_row <- sample(1:nrow(draws_df), 1)
days_data_raw <- sexual %>%

arrange(t) %>%
distinct(t)

days_data_conv <- days_data_raw %>%
mutate(t = ((t - seq_start) / seq_timestep + 1)) %>%
pull(t)

participant_data_sexual <- sexual %>%
select(c(t, C, number)) %>%
arrange(t, number) %>%
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pivot_wider(names_from = number, values_from = C) %>%
select(-c(t)) %>%
pull("11")

pred_times_t3 <- sexual %>%
select(t) %>%
pull(t)

pred_times_seq_t3 <- seq(0.1, max(pred_times_t3), by = 0.01)

for (i in 1:100) {
sampled_row <- draws_df[random_row, ]
conditional_params <- list(

participants = 1,
n_days = length(pred_times_seq),
pred_times = pred_times_seq,
initial_cell_counts = c(9600 * 1e-4, 0.0),
n_measurements = sexual %>% select(t) %>% n_distinct(),
days_data = days_data_conv,
y = participant_data_sexual,
Pe = 40 * 1e-4,
delta_e = 2,
k1_mu = sampled_row %>% pull(k1),
k1_tau = 0.1,
k2_mu = sampled_row %>% pull(k2),
k2_tau = 0.1,
P_mu = sampled_row %>% pull(P),
P_tau = 0.1,
mu_param_mu = sampled_row %>% pull(mu_param),
mu_param_tau = 0.1,
gamma_mu = sampled_row %>% pull(gamma),
gamma_tau = 0.1,
sigma_mu = sampled_row %>% pull(sigma),
sigma_tau = 0.1,
c0_mu = 1e2 * 1e-4,
c0_tau = 4e2 * 1e-5,
only_prior = 0

)
multi_imputation_fit <- imputation_model$sample(conditional_params,

seed = 365,
refresh = 1000,
parallel_chains = 4,
iter_warmup = 1000,
iter_sampling = 200)

draws_df <- as_draws_df(multi_imputation_fit$draws())
random_row <- sample(1:nrow(draws_df), 1)

}

ini_cell_counts <- c(E = 9600 * 1e-4, C = 1, I = 0)
pred_times <- data %>%

filter(number == 2) %>%
select(t) %>%
pull(t)

# pred_times <- pred_times %>% insert(ats = 1, values = c(0.0))
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pred_times_seq <- seq(0.0001, max(pred_times), by = 0.01)

test_params_hi$initial_cell_counts["C"] <- 1
test_params_hi_ct <- param_model$sample(test_params_hi, seed = 365, refresh = 0,

fixed_param = T, chains = 1,
iter_warmup = 10,
iter_sampling = 1)

test_params_lo$initial_cell_counts["C"] <- 1
test_params_lo_ct <- param_model$sample(test_params_lo, seed = 365, refresh = 0,

fixed_param = T, chains = 1,
iter_warmup = 10, iter_sampling = 1)

cs <- test_params_hi_ct$draws() %>%
reshape2::melt() %>%
dplyr::filter(str_detect(variable, "C")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "C\\[([0-9]*)\\]",
convert = TRUE

) %>%
dplyr::mutate(

time = test_params_hi$pred_times[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(mu = value) %>%
mutate(cell_type = rep("c", test_params_hi$n_days))

cs %>% ggplot(aes(x = time, y = mu)) +
geom_line(alpha = 1) +
theme_minimal() +
labs(x = "t, day", y = "C(t), EB count scaled by 10^-4")

cs <- test_params_lo_ct$draws() %>%
reshape2::melt() %>%
dplyr::filter(str_detect(variable, "C")) %>%
tidyr::extract(

col = variable, into = "ind",
regex = "C\\[([0-9]*)\\]",
convert = TRUE

) %>%
dplyr::mutate(

time = test_params_hi$pred_times[ind],
chain_iter = glue::glue("chain {chain}, iteration {iteration}"),
.keep = "unused"

) %>%
rename(mu = value) %>%
mutate(cell_type = rep("c", test_params_hi$n_days))
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cs %>% ggplot(aes(x = time, y = mu)) +
geom_line(alpha = 1) +
theme_minimal() +
labs(x = "t, day", y = "C(t), EB count scaled by 10^-4")

Stan code
Prior exploration code

functions{
// cell counts:
// element 1 is the e(t), 2 is c(t), 3 is I(t)
// t is the inital time,
vector chl_model(real t, vector cell_counts,

real Pe, real delta_e, real k1, real k2, real P, real mu, real gamma) {
vector[3] dydt;
// dE/dt
dydt[1] = Pe - delta_e*cell_counts[1] - k1*cell_counts[2]*cell_counts[1];
// dC/dt
dydt[2] = P*k2*cell_counts[3] - mu*cell_counts[2] - k1*cell_counts[2]*cell_counts[1];
// dI/dt
dydt[3] = k1*cell_counts[2]*cell_counts[1] - gamma*cell_counts[3] - k2*cell_counts[3];
return dydt;
}

}

data {
// our data are the quantities needed to solve our ODEs
vector[3] initial_cell_counts;
real Pe;
real delta_e;
real k1;
real k2;
real P;
real gamma;
real mu_param;
int n_days;
real pred_times[n_days]; // t[N] in lecture

}

generated quantities{
vector[n_days] C;
vector[n_days] E;
vector[n_days] I;
{

// remember to transpose the inital quantities vector!
// ode, ini_state, ini_time, times, model_params
vector[3] soln[n_days] = ode_bdf(chl_model, initial_cell_counts, 0.0, pred_times, Pe, delta_e, k1, k2, P, mu_param, gamma);
for(i in 1:n_days){

C[i] = soln[i, 2];
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E[i] = soln[i, 1];
I[i] = soln[i, 3];

}
}

}

Model code

Single subject:

functions{
// cell counts:
// element 1 is the e(t), 2 is c(t), 3 is I(t)
// t is the time,
vector chl_model(real t, vector cell_counts,

real pe, real delta_e, real k1, real k2, real p, real mu, real gamma) {
vector[3] dydt;
// dE/dt
dydt[1] = pe - delta_e*cell_counts[1] - k1*cell_counts[2]*cell_counts[1];
// dC/dt
dydt[2] = p*k2*cell_counts[3] - mu*cell_counts[2] - k1*cell_counts[2]*cell_counts[1];
// dI/dt
dydt[3] = k1*cell_counts[2]*cell_counts[1] - gamma*cell_counts[3] - k2*cell_counts[3];
return dydt;
}

}

data {
int participants; // number of participants in study
int n_days;
real pred_times[n_days]; // t[N] in lecture, seq(...)
// initial state of our system
vector[3] initial_cell_counts;
int n_measurements; // n_measurements in data
int days_data[n_measurements]; // data days
real<lower = 0> y[n_measurements];/// our data
real Pe;
real delta_e;
real k1_mu;
real k1_tau;
real k2_mu;
real k2_tau;
real P_mu;
real P_tau;
real mu_param_mu;
real mu_param_tau;
real gamma_mu;
real gamma_tau;
real sigma_tau;
int only_prior;

}

parameters {
real k1;
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real k2;
real P;
real mu_param;
real gamma;
real<lower=0> sigma;

}

transformed parameters{
real C[n_days]; // this should be a 2d array, either [n_subject, t_days] or transpose
//real E[n_days];
//real I[n_days];
real C_real[n_measurements]; // ode solns for C on days when measurements were taken
{

// ode, ini_state, ini_time, times, model_params
//vector[3] participant_ini = initial_cell_counts;
vector[3] soln[n_days] = ode_rk45(chl_model, initial_cell_counts, 0.0, pred_times, Pe, delta_e, k1, k2, P, mu_param, gamma);
C = soln[, 2];
//E = soln[, 1];
//I = soln[, 3];

/*for(day in 1:n_days){
C[day] = soln[day, 2];
E[day] = soln[day, 1];
I[day] = soln[day, 3];

}*/

for(day_idx in 1:n_measurements){
int day = days_data[day_idx];
C_real[day_idx] = C[day];

}
}

}

model {
// priors
k1 ~ normal(k1_mu, k1_tau);
k2 ~ normal(k2_mu, k2_tau);
P ~ normal(P_mu, P_tau);
mu_param ~ normal(mu_param_mu, mu_param_tau);
gamma ~ normal(gamma_mu, gamma_tau);
sigma ~ normal(0, sigma_tau);

//likelihood of C(t), eb counts
if(only_prior == 0) {

y ~ normal(C_real, sigma);
}

}

generated quantities{
real y_pred[n_measurements];
real log_lik[n_measurements];
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for (day_index in 1:n_measurements){
//int day = days_data[day_index];
log_lik[day_index] = normal_lpdf(y[day_index] | C_real[day_index], sigma);
y_pred[day_index] = normal_rng(C_real[day_index], sigma);
//print("day, participant, y_pred", day, participant, y_pred);

}
}

Task 3

functions{
// cell counts:
// element 1 is the e(t), 2 is c(t), 3 is I(t)
// t is the time,
vector chl_model(real t, vector cell_counts,

real pe, real delta_e, real k1, real k2, real p, real mu, real gamma) {
vector[3] dydt;
// dE/dt
dydt[1] = pe - delta_e*cell_counts[1] - k1*cell_counts[2]*cell_counts[1];
// dC/dt
dydt[2] = p*k2*cell_counts[3] - mu*cell_counts[2] - k1*cell_counts[2]*cell_counts[1];
// dI/dt
dydt[3] = k1*cell_counts[2]*cell_counts[1] - gamma*cell_counts[3] - k2*cell_counts[3];
return dydt;
}

}

data {
int participants; // number of participants in study
int n_days;
real pred_times[n_days]; // t[N] in lecture, seq(...)
// initial state of our system
vector[2] initial_cell_counts;
int n_measurements; // n_measurements in data
int days_data[n_measurements]; // data days
real<lower = 0> y[n_measurements];/// our data
real Pe;
real delta_e;
real k1;
real k2;
real P;
real mu_param;
real gamma;
real sigma;
real c0_mu;
real c0_tau;
int only_prior;

}

parameters {
real C_0;

}

transformed parameters{
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real C[n_days];
real C_real[n_measurements]; // ode solns for C on days when measurements were taken
{

// solve the ode
vector[3] soln[n_days] = ode_bdf(chl_model, [initial_cell_counts[1], C_0, initial_cell_counts[2]]', 0.0, pred_times, Pe, delta_e, k1, k2, P, mu_param, gamma);
C = soln[, 2];

// get the days that we also measured on
for(day_idx in 1:n_measurements){

int ode_soln_idx = days_data[day_idx];
C_real[day_idx] = C[ode_soln_idx];

}
}

}

model {
//prior
C_0 ~ normal(c0_mu, c0_tau);

// likelihood
y ~ normal(C_real, sigma);

}
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